摘要: | 目的:探討不同阻力(70% 1RM 與 40% 1RM)搭配不同加壓負荷(1.3倍收縮壓壓力與0.7倍的收縮壓壓力)對運動後立即的合成激素反應與代謝壓力的影響。方法:招募15名一般健康男性(年齡:19.8 ± 1.6歲,身高:171.1 ± 4.5 公分,體重:67.3 ± 7.8公斤),依平衡次序原則,讓研究對象分別接受下列五種實驗處理:(一)高強度阻力運動 (HR, 70% 1RM);(二)低強度阻力運動 (LR, 40% 1RM);(三)高強度阻力運動 + 低加壓測驗 (HRLO, 70% 1RM + 0.7 SBP);(四)低強度阻力運動 + 高加壓測驗 (LRHO, 40% 1RM + 1.3 SBP)與(五)低強度阻力運動 + 低加壓測驗 (LRLO, 40% 1RM + 0.7 SBP),實驗處理間休息至少五日。阻力運動以斜坐推蹬方式進行雙腿阻力運動(共5組,每組反覆12次,組間休息1分鐘);加壓部位於雙腿大腿近端(加壓時間與放鬆時間同阻力運動)。在運動前 (pre)、運動後立即 (post)、15 (post-15)、30 (post-30)、60 (post-60) 分鐘進行抽血,比較血清胰島素、血清睪固酮、血清生長激素、血清皮質固醇、血漿乳酸、pH與血漿葡萄糖之差異;並比較實驗處理前 (pre) 後 (post-60) 對最大肌力(最大等長肌力、最大等張肌力)與肌電訊號(股外側肌)之差異。結果:HRLO在運動後有較高的生長激素且持續至運動後30分鐘 (pre: 0.95 ± 2.07, post: 6.01 ± 6.24, post-15: 4.53 ± 4.51, post-30: 3.44 ±3.23 ng / ml, p > .05),HRLO相較於LRHO、LRLO與LR在運動後立即 (HRLO: 6.80 ± 1.77, LRHO: 5.82 ± 1.53, LRLO: 5.47 ± 1.18, LR: 5.74 ± 1.48, p < .05) 與運動後60分鐘 (HRLO: 6.35 ± 1.53, LRHO: 5.19 ± 1.17, LRLO: 5.32 ± 1.08, LR: 5.54 ± 1.47, p < .05) 有較高的睪固酮濃度;HRLO的實驗處理能在運動後引起較高的代謝壓力反應 (LA、pH值與RPE) 並降低最大等長肌力表現(下降9.3%)。結論:高阻力低加壓的運動模式引起體內較高的合成激素反應,雖產生較大的代謝壓力反應伴隨肌力下降的現象,但此一立即性的反應是造成細胞蛋白質合成與肌肥大之關鍵基礎。
Purpose: The aim of this study was to investigate the effect of different resistance loads (70% 1RM and 40% 1RM) combined different occlusion pressures (1.3SBP and 0.7SBP) on post-exercise acute anabolic hormone and metabolic stress. Methods: Fifteen healthy males (age: 19.8 ± 1.6yrs; height: 171.1 ± 4.5 cm; weight: 67.3 ± 7.8kg) were recruited in this study to perform bilateral leg extension (5 sets, 12 repetitions with 1min rest among all sets) under five experimental conditions: (1) high intensity resistance exercise (HR, 70% 1RM); (2) low intensity resistance exercise (LR, 40% 1RM); (3) high intensity resistance exercise with low occlusion pressure (HRLO, 70% 1RM + 0.7SBP); (4) low intensity resistance exercise with high occlusion pressure (LRHO, 40% 1RM + 1.3SBP); (5) low intensity resistance exercise with low occlusion pressure (LRLO, 40% 1RM + 0.7SBP). Blood samples were collected prior exercise (pre), and 0, 15, 30, 60 min after exercise (post, post-15, post-30 and post-60) for analysis of growth hormone, testosterone, cortisol, insulin, glucose, lactic acid and pH. The maximal voluntary contraction and electromyography of vastus lateralis were compared at pre and post-60. By counter balance design, each experiment separated by at least 5 days. Results: The GH of HRLO was higher at post, post-15 and post-30 than pre (pre: 0.95 ± 2.07, post: 6.01 ± 6.24, post-15: 4.53 ± 4.51, post-30: 3.44 ±3.23 ng / ml, p > .05). The testosterone of HRLO was higher at post (HRLO: 6.80 ± 1.77, LRHO: 5.82 ± 1.53, LRLO: 5.47 ± 1.18, LR: 5.74 ± 1.48, p < .05) and post-60 (HRLO: 6.35 ± 1.53, LRHO: 5.19 ± 1.17, LRLO: 5.32 ± 1.08, LR: 5.54 ± 1.47, p < .05) than LRHO, LRLO and LR. HRLO also induced higher metabolic stress (LA and pH) and more muscular strength decline (-9.3%). Conclusion: The mode of high intensity resistance loads combined low occlusion pressure could induce higher anabolic hormone response, although higher metabolic stress and more muscular strength decline were also found, but this acute response was the essential fundamental to activate muscle protein synthesis and hypertrophy. |