文化大學機構典藏 CCUR:Item 987654321/20093
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 47249/51115 (92%)
Visitors : 14044101      Online Users : 234
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/20093


    Title: 以類神經網路模式估計高分子之玻璃轉化溫度
    Authors: 楊瑞彬
    Contributors: 材料科學與奈米科技研究所
    Keywords: 玻璃轉化温度
    類神經網路
    Date: 2010
    Issue Date: 2011-10-31 15:55:16 (UTC+8)
    Abstract: 在本論文中使用了一組四個參數的描述因子,包括:∑MV(ter)R(ter)、LF、∆XSB和∑PEI來估計84個高分子的玻璃轉化溫度,並且分別以多元線性迴歸分析與逆傳遞類神經網路來建造玻璃轉化溫度的估計模型。在本文中建立了以4-8-1層架構的最佳類神經網路,經過訓練組的訓練與驗證組的驗證測試,分別得到了均方根誤差為3.3 K(R2=0.9975)與13.9 K(R2=0.9513)的結果。從測試的結果顯示,以類神經網路模式估計高分子的玻璃轉化温度可以得到非常準確的估計值。
    In this thesis, a set of four-parameter descriptors, ∑MV(ter)R(ter), LF, ∆XSB and ∑PEI were used to correlate with glass transition temperatures for 84 polymers. Multiple linear regression analysis and back-propagation artificial neural network (ANN) were used to generate the model. The final optimum neural network with 4–8–1 structure produced a training set root mean square error(RMSE) of 3.3 K (R2=0.9975) and a validation set RMSE of 13.9 K (R2=0.9513). The results show that the ANN model obtained in this study is accurate in the estimation of values for polymers.
    Appears in Collections:[Department of Chemical & Materials Engineering] thesis

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML251View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback