文化大學機構典藏 CCUR:Item 987654321/19707
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 46965/50831 (92%)
Visitors : 12835807      Online Users : 273
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/19707


    Title: 運用RFM分群與關聯規則技術於產品推薦之研究-以電話行銷為例
    Authors: 黃建銘
    Contributors: 資訊管理研究所碩士在職專班
    Keywords: 資料挖掘
    關聯規則
    Date: 2010
    Issue Date: 2011-10-11 14:47:15 (UTC+8)
    Abstract: 伴隨著現代社會的發展,資訊科技的高度發展以及網路的快速風行,市場的競爭越趨激烈,如何在高度競爭的市場,了解顧客、掌握顧客、提供顧客適切的需求,提高客戶的忠誠度,是勝出的關鍵。對企業而言,可以將相似特徵的客戶分群,按照消費的模式,提供適當符合需求的商品組合,以提升客戶的滿意度、忠誠度,使企業獲利提昇,並使企業的業務行銷效益提高。
    本研究以重視客戶名單的電銷業為例,以電銷業的交易資料庫,使用RFM作為客戶分群,並針對企業特性將其中的M(購買金額)改為AvgM(平均交易金額),以避免新顧客因購買次數過少、購買金額過低,而忽略其重要性。找出相似消費模式的客戶群後,針對相似消費模式,運用資料探勘(Data Mining)的關聯規則(Association Rule)進行挖掘,求得關聯規則後,進行商品推薦。
    本研究,針對不同的客戶群,進行不同的商品推薦,除提供電銷業不同客群差異化行銷外,同時讓電銷業針對不同的客群得到更高的成交率,可以讓電銷業得到更高的利潤,並可使用更多的名單,提升名單的成交數,不用一直侷限於最佳客戶族群。
    With the growth of modern society, highly development of information technology, and the fast spread of the Internet, the keys to surpass are knowing , satisfying the cus-tomers, and increasing the royalty in highly competitive market. For an enterprise, to divide customers into groups by similar characteristics and to provide the merchandise combinations which meet the demand can increase customer satisfaction and royalty. Therefore the enterprise is able to capture maximum profit. The marketing and sales units are able to grab maximum benefit.
    This research takes the example of telemarketing industry who gives weight to the name list marketing. RFM is used to group the customers who are listed in the transac-tion database of telemarketing industry. It also takes the characteristic of the company into account and replaces M (purchase amount of money) with AvgM (Average pur-chase amount of money) in order to know the importance of new customers who have less purchase frequency and less purchase amount of money. After finding out the cus-tomers’ group which has similar purchasing pattern, we can target at similar purchasing pattern and utilize the association rules of data mining to dig out association rules. Then we can have the recommendation of merchandises.
    This research aims at different customer groups and recommends different mer-chandises. It not only provides telemarketing industry differentiation marketing for dif-ferent customer groups, but also provides telemarketing better conversation rate and in-crease the profit for telemarketing industry. In the same time, it can use more lists and increase the conversation numbers. Telemarketing industry won’t be limited by best customer groups.
    Appears in Collections:[Department of Computer Science and Information Engineering] thesis

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML562View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback