文化大學機構典藏 CCUR:Item 987654321/18294
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 46867/50733 (92%)
Visitors : 11883992      Online Users : 748
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/18294


    Title: 企業財務報表舞弊偵測之研究
    Authors: 葉清江
    齊德彰
    林欣瑾
    Contributors: 會計系
    Keywords: 財務報表舞弊
    資料探勘
    貝氏信度網路
    決策樹
    支援向量機
    Date: 2008-12
    Issue Date: 2010-12-23 13:12:41 (UTC+8)
    Abstract: 本研究應用資料探勘中貝氏信度網路、支援向量機以及決策樹等方法,並採用財務及非財務變數,作為協助偵測財務報表舞弊之工具。研究對象為1998年~2005年60家發生財務報表舞弊及非財務報表舞弊之公司。結果發現,財務及非財務資訊有效用於辨別財務報表舞弊;且貝氏信度網路分類效果最好,次為支援向量機,最後為決策樹。
    This paper explores the effectiveness of Data Mining Classification techniques such as Bayesian Belief Networks, Decision Tree and Support Vector Machine in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated with FFS. First, we underline the importance of financial and non-financial factors that can be used in the identification of FFS. Second, a number of experiments have been conducted using these techniques which were optimized using a data set of 60 fraud and non-fraud firms in the recent period 1998~2005. The results shows that the Bayesian Belief Network has better performance than the Decision Tree and Support Vector Machine.
    Relation: Asian Journal of Management and Humanity Sciences 3卷1-4期 P.15-30
    Appears in Collections:[Department of Accounting & Graduate Institute of Accounting] periodical articles

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML469View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback