中國文化大學理學院化學系應用化學碩士班 碩士論文

Master of Science Thesis Master Program of Applied Chemistry, Department of Chemistry College of Science Chinese Culture University

1-烷基醚化-3-甲氧基苯甲酸酯化之 calix[4]arenes 分子內苯甲酸酯基轉移的動力研究

The study of the benzoyl-migration behavior in 1-alkoxy-3-(*p*-methoxybenzoyl)oxycalix[4]arenes

指導教授:林立錦教授 Advisor: Professor Lee-Gin Lin

研究生:黃鼎評 Graduate Student:Ding-Ping Huang

> 中華民國 103 年 6 月 June2014

中國文化大學

碩士學位論文

1-烷基醚化-3-甲氧基苯甲酸酯化之 calix[4] arenes

分子內苯甲酸酯基轉移的動力研究

研究生:黄鼎評

經考試合格特此證明

指導教授:林白錦

口試日期:中華民國 103 年 06 月 26 日

謝誌

轉眼間碩士生涯就結束了,在這兩年很慶幸可以得到林立錦教授的 指導,使我在學識上及為人處事都得到許多新的體悟,非常感謝林立 錦老師提供了優良並且充足的研究資源與場所,讓我可以順利的完成 碩士學位,道不盡的感謝,我會銘記在心。

還要感謝實驗室的夥伴們,首先要感謝貢九學長與杰泰學長,在我 剛進實驗室時,叮嚀我每一個實驗的步驟與細節,還把自己的經驗分 享給我,讓我節省了很多時間與精力;還有冠甫,跟我一起進入碩士 的生活,在課堂上以及實驗室裡一起相互扶持同甘共苦,謝謝他這兩 年的打鬧嘻笑,希望他之後也可以順順利利。

接著要感謝我碩班的好朋友們, 豆子、鈺婷、阿蓮、耀閎、士樑、 孟憲、阿富、阿郭、妹妹, 謝謝他們的友情相挺, 不論在課堂上或公 文都幫助了我不少, 否則我想我這兩年碩士生涯會非常辛苦枯燥的。

還有要感謝以前的學長姐們,因為她們以前的努力與成果,讓我的 實驗才有跡可循。

最後還要感謝我的家人,謝謝他們在我碩士生涯的支持,不論是精 神上或物質上,一路都支持著我,希望能將此份喜悅與我的家人們分 享。

黃鼎評

摘要

calixarene,為一種酚與甲醛的環狀聚合物,因其分子內具有杯型 中空的結構,故可以嵌合一些小型的有機分子或金屬離子,而形成"主 -客化合物",其特性可推廣應用於離子分離、微量金屬檢測及酵素模 擬的研究。本論文主要目的為探討一系列 1-乙基-3-苯甲醯基酯化 calix[4]arenes之苯甲醯基及 1-苯甲基-3-苯甲醯基酯化 calix[4]arenes 之 苯甲醯基轉位的研究。

三級丁基酚和甲醛在鹼性的催化下,可聚合成黃綠色的前驅物。 此前驅物在二苯醚的迴流下,可被轉換為 p-tert-butylcalix[4]arene;環 狀聚合產物上的對位三級丁基,可利用三氯化鋁進行反向的 Friedel-Crafts 反應進行減除,而得到對位無取代之 calix[4]arene(6)。

根據本實驗室過去的研究中發現, calix[4]arene 與適量的甲醇鈉及 鹵化烷類在乙腈中迴流,可一步合成出一系列單烷基醚化之 calix[4]arenes (27-31);這些單烷基醚化之 calix[4]arenes 再與不同種類 的單苯甲酸醯氯進行酯化時,可分別得到一系列的1-單烷基醚化-3-苯 甲酸酯化 calix[4]arenes(32-35)。而這一類1-單烷基醚化-3-苯甲酸基酯 化 calix[4]arenes(32-35),可在鹼性條件下,被轉換成1-單烷基醚化-2-苯甲酸基酯化 calix[4]arenes(36-39)。 因此,本論文最終的目的便是在 K₂CO₃的鹼性條件下,探討對化 合物 32-35 之下緣苯甲酸酯基的轉移反應的動力學研究,並利用 ¹H-NMR 來鑑定出轉移後的產物。

Abstract

Calixarenes, which are cyclic oligomers of *p*-substituted phenols and formaldehyde, are able to include small organic molecules or metal ions within molecular cavities to form the "host-guest complexes". This phenomenon has been proposed in the research area of micro-analysis detection devices, ion separation, and enzyme-mimic studies. The main purpose of this thesis is to study the benzoyl-migration behavior in 1-ethoxy-3-benzoyloxycalix[4]arenes and 1-benzyloxy-3-benzoyloxy-calix[4]areness.

In the present of a base, *p-tert*-butylphenol and formaldehyde were polymerized to form a yellowish precursor. Refluxing the precursor in diphenyl ether yielded the *p-tert*-butylcalix[4]arene. The *p-tert*-butyl groups were then removed via AlCl₃-catalyzed reverse Friedel-Crafts reaction to give the calix[4]arene(**6**).

In our earlier studies, we have noticed that in the present of sodium methoxide, the calix[4]arene can be converted to monoalkyloxycalix[4]arenes (27-31) by refluxing with different kind of alkyl halides in acetonitrile.

Esterification of the monoalkylated calix[4]arenes (27-31)with excess ofbenzoyl chloride or *p*-substituted benzoyl chlorides in pyridine produced the corresponding 1-alkoxy-3-benzoyloxycalix[4]arenes(32-35). The 1-alkoxy-3-benzoyloxycalix[4]arenes (32-35)were then conrected to 1-alkoxy-3-benzoyloxycalix[4]arenes(36-39)under basic condition.

The kinetic property of the benzoyl-migration was investigated, and the benzoyl-migrated products were isolated and characterized by ¹H-NMR

摘要I
AbstractIII
目錄IV
圖目錄VII
表目錄XI
第一章緒論1
1-1 前言1
1-2 Calixarenes 的簡介2
1-3 Calixarenes 的歷史3
1-4 Calixarenes 的命名
第二章 Calixarenes 的理論及應用8
2-1 Calixarenes 的定義8
2-2 Calixarenes 的組構異構物9
2-3 Calixarenes 的應用12
第三章 Calixarenes 的合成
3-1 一步合成法21

	3-2	多步合成法
	3-3	官能基化法
第	四章	1-單烷基醚化-3-苯甲醯基酯化 calix[4]arene 的合成34
	4-1	Calix[4]arene 的製備 ······35
	4-2	單烷基醚化 calix[4]arenes 的製備
	4-2-1	單烷基醚化 calix[4]arenes 的 ¹ H-NMR 光譜分析
	4-3	1-單烷基醚化-3-單苯甲酸酯化 calix[4]arenes 的製備39
	4-3-1	1-單烷基醚化-3-單苯甲酸酯化 calix[4]arenes 的 ¹ H-NMR 光譜分析40
	4-4	1-單烷基醚化-3-對位甲氧基苯甲酸酯化 calix[4]arenes 的製
	4-4-1	摘
第	五章	酯基官能基轉換動力學探討研究43
	5-1	First Order 動力學公式的推導45
	5-2	1-乙基醚化-2-苯甲醯基酯化 calix[4]arenes 的製備46
	5-3	1-乙基醚化-2-苯甲醯基酯化 calix[4]arenes 的轉換動力學研
		究
	5-3-1	化合物 32 轉移化合物 36 後的動力學探討47
	5-3-2	化合物 34 轉移化合物 37 後的動力學探討54

5-41-	·單苯甲	甲基醚化-2	- 苯甲	1醯基酯化	calix[4]arenes	的製備	61
-------	------	--------	------	-------	----------------	-----	----

5-5 1-單苯甲基醚化-2-苯甲醯基酯化 calix[4]arenes 的轉換動力

學學研究		
5-5-1 化合物 33 轉移化	合物 38 後的動力學探討	
5-5-2 化合物 35 轉移化	合物 39 後的動力學探討	
結論		76
實驗步驟		
參考文獻		84
化合物光譜圖	Nersity Libra	88
	★ Cline and Cl	

圖目錄

圖一: Zinke 所合成的不同對位取代基的 calix[4]arenes。
圖二:p-tert-Butylphenol和甲醛在鹼的催化下的產物。6
圖三: 巨環結構 calix[4]arene(6)及 <i>p-tert</i> -butylcalix[4]arene(1)結構圖。
7
圖四: Calix[4]arene 之四種組態異構物。9
圖五: Cram 利用間苯二酚類的 calixarenes 合成出上述結構。12
圖六:X-ray 結晶圖(左為 1:1 的 <i>p-tert</i> -butylcalix[4]arene 和甲苯之複
合物; 右為 1:2 的 calix[5]arene 和丙酮之複合物)。13
圖七:(a) 乙腈分子嵌合在杯形中空內。14
(b) 金屬離子因正電荷相互作用,嵌合在兩個平行的苯環中間。
Culture Unit
圖八: 25,27-Bis(2-propyloxy)-calix[4]arene-crowns-6 和 Cs ⁺ 離子複合
物的 X-ray 結構。14
圖九:1,3-Dimethylcalix[4]arenes 與 Al 的兩種配位異構物。15
圖十:1,3-Di(trimethylsilane)calix[4]arenes 和 Ge 的配位異構物。15
圖十一:下緣含有類似冠狀醚官能團之 p-tert-butylcalix[4]arenes。17
圖十二: Hayes 和 Hunter 的多步合成法之流程。25
圖十三: Kammerer 利用 Hayes 和 Hunter 的多步合成法所合成之
calixarenes °26

圖十四: Bohmer, Chhim 和 Kammerer 的多步合成法之流程。27
圖十五:No 和 Gutshe 之多步合成法流程。28
圖十六:官能基化法中親電子取代反應之流程。
圖十七: Shinkai 等所提出之多官能基化法。
圖十八: Gutsche 和其工作伙伴所提出之官能基化法之一。
圖十九: Gutsche 和其工作伙伴所提出之官能基化法之二。
圖二十:1-單烷基醚化-3-苯甲醯基酯化 calix[4]arenes 的合成途徑。
圖二十一: Calix[4]arene 的合成。
圖二十二:單烷基醚化 calix[4]arenes 的合成之二。
圖二十三:單烷基醚化 calix[4]arenes 的單苯甲酸酯化合成。39
圖二十四:單烷基醚化 calix[4]arenes 的對位甲氧基苯甲酸酯化合成。
圖二十五:苯甲酸酯基其轉移之路徑圖44
圖二十六:1-乙基醚化-2-苯甲醯基酯化 calix[4]arenes 的合成。46
圖二十七(1/2): 化合物 32 轉換成化合物 36 隨時間改變的 ¹ H-NMR 圖
譜(CDCl ₃)
圖二十七(續 2/2): 化合物 32 轉換成化合物 36 隨時間改變的 ¹ H-NMR
圖 譜(CDCl ₃)49

圖二十八: Benzoyl migration of 1-ethoxy-3-benzoyloxycalix[4]arene with
hydrolyzed product51
圖二十九: Benzoyl migration of 1-ethoxy-3-benzoyloxycalix[4]arene
without hydrolyzed product52
圖三十: Benzoyl migration of 1-ethoxy-3-benzoyloxycalix[4]arene
without hydrolyzed product53
圖三十一(1/2): 化合物 34 轉換成化合物 37 隨時間改變的 ¹ H-NMR 圖
譜(CDCl ₃)55
圖三十一(續 2/2): 化合物 34 轉換成化合物 37 隨時間改變的 ¹ H-NMR
圖譜(CDCl ₃)56
圖三十二: Benzoyl migration of 1-ethoxy-3-(p-methoxybenzoyl)
oxycalix[4]arene with hydrolyzed product
圖三十三: Benzoyl migration of 1-ethoxy-3-(p-methoxybenzoyl)
oxycalix[4]arene without hydrolyzed product59
圖三十四: Benzoyl migration of 1-ethoxy-3-(p-methoxybenzoyl)
oxycalix[4]arene without hydrolyzed product60
圖三十五:1-苯甲基醚化-2-苯甲醯基酯化 calix[4]arenes 的合成。61
圖三十六(1/2): 化合物 33 轉化合物 38 隨時間改變的 ¹ H-NMR 圖譜
(CDCl ₃)63
圖三十六(續 2/2): 化合物 33 轉化合物 38 隨時間改變的 ¹ H-NMR 圖
譜(CDCl ₃)64

圖三十七: Benzoyl migration of 1-benzyloxy-3-benzoyloxycalix[4]arene
with hydrolyzed product66
圖三十八: Benzoyl migration of 1-benzyloxy-3-benzoyloxycalix[4]arene
without hydrolyzed product67
圖三十九: Benzoyl migration of 1-benzyloxy-3-benzoyloxycalix[4]arene
without hydrolyzed product68
圖四十(1/2):化合物 35 轉化合物 39 隨時間改變的 ¹ H-NMR 圖譜
(CDCl ₃)70
圖四十(續 2/2): 化合物 35 轉化合物 39 隨時間改變的 ¹ H-NMR 圖譜
(CDCl ₃)
圖四十一: Benzoyl migration of 1-benzyloxy-3-(p -methoxybenzoyl)
oxycalix[4]arene with hydrolyzed product73
圖四十二: Benzoyl migration of 1-benzyloxy-3-(<i>p</i> -methoxybenzoyl)
oxycalix[4]arene without hydrolyzed product74
圖四十三: Benzoyl migration of 1- benzyloxy -3-(p-methoxybenzoyl)
ovvalix[4] grops without hydrolyzed product 75

表目錄

表一: <i>p-tert</i> -Butylcalix[4]arene 各種組構異構物之 ¹ H-NMR。10
表二:鹼性溶液中 p-tert-butylcalixarenes 對陽離子的轉移,常數 (單
表三:Calixarene crown ethers 與金屬離子之結合能力
(AssociationConstants, K _a) •17
表四:水溶性 calixarenes 對金屬離子之穩定常數(stability constant, log k)。
表五: 化合物 32 轉化合物 36 隨時間變化積分值。50
表六:化合物 32 轉換成化合物 36 隨時間變化起始物、轉位產物、水
解產物的百分比。
表七:化合物 32 轉換成化合物 36 隨時間變化起始物、轉位百分比。
表八:化合物 34 轉化合物 37 隨時間變化積分值。57
表九:化合物 34 轉化合物 37 隨時間變化起始物、轉位產物、水解產
物的百分比。
表十:化合物 34 轉 37 隨時間變化起始物、轉位的百分比。59
表十一:在乙基醚化下,苯甲醯基轉位之 k1 值及相對速率。60
表十二:化合物 33 轉化合物 38 隨時間變化積分值。65

表十三:化合物 33 轉化合物 38 隨時間變化起始物、轉位產物、水解

產物的百分比。......66

表十四:化合物 33 轉化合物 38 隨時間變化起始物、轉位百分比。67

表十六:化合物 35 轉化合物 39 隨時間變化起始物、轉位產物、水解

產物的百分比。......73

表十七:化合物 35 轉化合物 39 隨時間變化起始物、轉位產物的百分

第一章 緒論

1-1 前言

自1967年Pederson合成冠狀醚 (crown ethers) 之後,探討分子識 別現象的研究便日益增多,其中 C. Pederson、D. J. Cram與J. M. Lehn 三人提出了「主客體化學(host-guest chemistry)、超分子化學 (supermolecule chemistry)及嵌合化學(inclusion chemistry)」的理論, 更於1987年共同獲得諾貝爾化學獎。

早期的主客化學研究多半針對自然界的酵素系統,酵素與受質之間具有高度專一性,如同鎖和鑰匙一般,但由鎖與鑰匙原理衍生出的主客化學,則不再侷限於酵素的系統。

所謂主客體化學、超分子化學或嵌合化學,均泛指兩個或多個化 學物質(分子和離子等),由分子間相互的作用力,形成超分子聚集體 的化學。在一般所知的化學鍵結中,鍵結的方式主要為共價鍵或離子 鍵,但在主客體化學、超分子化學或嵌合化學中,結合的方式則是建 立在分子識別的基礎上。

目前,分子識別的研究已從化學領域中獨立分支,其範圍涵蓋有 機化學、無機化學、高分子化學、配位化學、生物化學及物理化學。 由於其結構的形成,具有模仿自然界物質的效果,因此近年成為生命 科學、奈米科技和材料科學中重要的一部分。除了冠狀醚(crown ethers) 之外,環糊精(cyclodextrin)、環芳烴(calixarene)、索烴(catenane)和旋 環烴(rotaxane) 等,亦都屬於超分子化合物的一部份,而Calixarenes 則是繼環糊精、冠醚之後出現的超分子。

1-2 Calixarenes 的簡介

當酚和甲醛在鹼性催化下,於不同的反應條件時,會分別聚合得 到線狀、環狀及網狀等三種構型不同的聚合物,其中網狀的聚合物為 人工合成的第一種非天然性的聚合材料,而另一種具有分子內杯形中 空結構的環狀化合物則通稱為calixarenes。環狀聚合的calixarenes具有 以下特點:(1)可經由改變反應條件來控制苯酚的個數可調節分子內 中空孔徑的大小;(2)可透過化學反應條件的修飾以引入適當的取代 基來確立所需的構型;(3)可利用環上不同官能基團的轉換與苯酚環 對位的活性,透過置換、取代的化學反應導入具有特殊功能的官能團, 來修飾calixarenes的鍵結選擇性。

p-tert-Butylcalix[4]arene

calixarenes 因具有上述特性,則可讓一些小型的有機分子或金屬

離子進入其中空杯形的分子內,形成所謂的 "主客化合物" (host-guest complexes)。而這些特性伴隨著主客化學 (host-guest chemistry) 的發展,引起學術界高度矚目;另外針對主客化學的形 成與特性做更進一步研究,將有助於設計出一些非蛋白質的人工酵 素,進而了解在體外 (*in vitro*) 所進行酵素模擬的催化研究。

1-3 Calixarenes 的歷史

1872 年 A. Baeyer¹提出, 當酚和甲醛於鹼性水溶液中加熱後, 會聚合生成一種堅硬的非晶形樹脂性產物,但由於當時的知識與設 備資源有限,並無法對此種物質的結構做更進一步的確認,因此這 一種酚甲醛的反應,便沒有進行更深入的研究與探討;直至 1905-1909 年間,L. H. Baekeland²利用相同的酚和甲醛聚合反應,製 造出一種具有堅韌特性之人工合成樹脂,並以"電木"(Bakelite)的商 業名進行行銷,這一個成功的商業成果,使人類在材料科學上向前 邁進了一大步,更引發在工業界及學術界對酚和甲醛的聚合反應進 行研究的趨勢。

在眾多酚甲醛聚合的研究中,以A. Zinke³和其工作伙伴最具代表性, Zinke 是將數種 *p*-alkylphenols 和甲醛水溶液在氫氧化鈉的鹼

性條件下進行催化聚合反應;在經過處理後,他們分離出一些熔點 極高,且只溶於少數有機溶劑的化合物,並藉由測定其乙酸乙酯之 衍生物的分子量,推論出這些高融點、低溶解度的化合物為環狀四 合物,如圖一所示。

圖一: Zinke 所合成的不同對位取代基的 calix[4]arenes。

但 J.W. Cornforth⁴ 在重複 Zinke 的合成步驟時,卻分離出兩種光 譜相同,但融點卻完全不同的化合物,當時 Cornforth 認為那是環狀 四合物的一對組構異構物;但 H. Kammerer⁵和 J. Munch⁶分別對這些 環狀化合物做 ¹H-NMR 的動力研究時,卻發現這些環狀化合物在室 溫下,皆可在結構上做迅速的轉換,此一結果立刻推翻了 Cornforth 的 假 設;最後 C.D. Gutsche⁷ 和 其工作伙伴才明確的指出 *p-tert*-butylphenol 和甲醛在不同的反應條件下,會分別生成數種不同 大小的環狀聚合物,其中包括環狀四合物(1),環狀六合物(2),環狀 八合物(3),而少量的環狀五合物(4)和環狀七合物(5)亦可被合成出, 如圖二所示;至於 Cornforth 所分離出的兩種熔點不同的化合物,則 是環狀四合物和環狀八合物。

到了1979年,G.D.Andreetti和 R.Ungaro⁸利用 X-ray 單晶繞射證 實了 Zinke 所提出的環狀化合物之結構,再加上 Gutsche 和其工作伙 伴對此類環狀化合物的研究,以及水溶性 calixarenes⁹的合成,使得 這一類酚和甲醛的環狀聚合物(calixarenes),從二十世紀八十年代起成 為化學界上相當被重視的一個新研究領域。

圖二: p-tert-Butylphenol 和甲醛在鹼的催化下的產物。

1-4 Calixarenes 的命名

在 IUPAC 的正式命名法中,具 calixarene 結構之化合物(6)應命名為 pentacyclo-[19,3,1,1^{3,7},1^{9,13},1^{10,11}]-octacosa-1(25)^{3,5,7}(26)^{9,11,13}(27)^{15,17,19}-(28)^{21.} ²³-dodecaene-25,26,27,28-tetraol。但由於這類化合物的結構外形類似於杯 狀,為了討論上方便,Gutsche將所有由酚和甲醛所聚合成的環狀聚合物, 命名為 calixarene (在希臘文中 calix 為酒杯之意,而 arene 則表示由芳香 環排列成的巨環結構),並在 calix 和 arene 之間插入數字 以表示環的大小。因此,結構(6)之環狀四合物可命名為 25,26,27,28-tetrahydroxycalix[4]arene,簡稱為 calix[4]arene;同理, 結構(1)化合物命名 5,11,17,23-tetra-*tert*-butyl-25,26,27,28-tetrahydroxycalix[4]arene,亦簡稱為*p-tert*-butylcalix[4]arene,如圖三所示。

圖三: 巨環結構 calix[4]arene(6)及 p-tert-butylcalix[4]arene(1)結構圖。

第二章 Calixarenes 的理論及應用

2-1 Calixarenes 的定義

Calixarenes是在苯酚2,6鄰位上連接亞甲基的巨環化合物,其性質 與冠醚和環糊精類似,因此也被歸類為超分子; calixarenes與冠醚和 環糊精相比,其優點在於calixarenes容易進行化學修飾,因此在理論 上,可規劃製備出許多化性及物性各異的calixarenes衍生物。而 calixarenes的分子結構上,具有上寬下窄的中空杯形,但其結構的底 端卻又緊密相鄰的苯酚羥基,讓這一個中空杯形的分子同時具有厭水 性和親水性,使得calixarenes及其衍生物幾乎能與所有的化學物質形 成配合物。

D. J. Cram¹⁰ 曾廣義的將具有中空的結構的分子,能與離子或分 子形成複合物的人工合成體,定義為"cavitand";而calixarenes的分子 特性完全符合此定義,於是被認定為cavitand類型的化合物。因此, 近數十年來,便有多項研究利用calixarenes的特性來對鑭、鈾以及銫 系元素之金屬離子進行選擇性的萃取,另外亦有和中性有機分子進 行主客化合物的結合和酵素模擬的研究。

2-2 Calixarenes 的組構異構物

Cornforth⁴ 在文獻中指出, calix[4]arenes 具有四種穩定的結構組 態;而Gutsche¹¹ 則將這四種組態明確定義為 "cone", "partialcone", "1,2-alternate" 和 "1,3-alternate", 如圖四所示。

圖四: Calix[4]arene 之四種組態異構物。

Kammerer⁵和 Munch⁶在研究 *p-tert*-butylcalix[4]arene 的¹H-NMR 動力光譜時,發現在常溫或高溫時,光譜圖中亞甲基氫(ArCH₂Ar) 的 訊號為單一波峰 (singlet);但在低溫時,則形成一對雙波峰(doublet)。 此現象表明在高溫時,因分子內的氫鍵被破壞,使得 calix[4]arene 的 四種組態會因快速的轉換而同時存在,所以光譜中只會顯示出一單峰; 但在低溫時,分子內穩定的氫鍵,會使 calix[4]arene 以穩定的"cone" 組態存在,故會顯示出一對雙峰。而Gutsche 對*p-tert*-butylcalix[4]arene 的各種組態,在對稱性的考量下,對核磁共振光譜的訊號做更進一步

表一: p-tert-Butylcalix[4]arene 各種組構異構物之¹H-NMR。

andro						
	¹ H-NMR					
Conformation	Ar <u>H</u>	-C <u>H</u> ₂ -	$-C(C\underline{H}_3)_3$			
Cono	One singlet	One pair of doublets	One singlet			
Colle	One singlet	(J = 12 Hz)	One singlet			
	Two singlets	Two pairs of doublets				
	and	(J = 12 Hz, ratio 1:1)				
Dortial Cana	two doublets	or	Three singlets			
Fattial Colle	or	one pair of doublets	(ratio 1:2:1)			
	four singlets	(J = 12 Hz) and one				
	(ratio 1:1:1:1)	singlet (ratio 1:1)				
		One singlet and				
1.2 Alternate	Two singlets	two doublets $(J = 12)$	One singlet			
1,2-Alternate	(ratio 1:1)	Hz)				
		(ratio 1:1)				
1,3-Alternate	One singlet	One singlet	One singlet			

常溫下, "cone", "partial cone", "1,2-alternate"和"1,3-alternate"這 四種組態,會經由苯環與亞甲基之間的單鍵做自由的旋轉而互換,使 得calix[4]arenes無法形成一個固定形狀的中空。因此,若要在常溫下 對calix[4]arenes進行主客體化合物和酵素模擬的研究時,必須先將其 固定在 "cone" 或 "partial cone" 的組態上。而固定組態常用的方法, 一般是將calix[4]arenes的羥基加以醚化或酯化,讓原來的羥基轉換成 較大的官能基,進而限制其向環內做自由的旋轉,對於此種固定法, Gutsche¹¹和 Ungaro¹² 皆有詳盡的研究。除此之外,亦可利用"架橋 法"將其相近的兩個苯環加以固定,迫使苯環結構無法自由旋轉而固 定其組態,例如Cram¹³曾利用octahydroxycalix[4]arene和CH₂ClBr或 2,3-dichloro-1,4-diazanaphthalene反應,如圖五所示分別得到如結構7 及結構8的化合物;這兩個化合物皆為間苯二酚類的calixarenes,利用 其相鄰苯環上的兩個相近酚羥基,以一個橋連基團共價鍵結連接,所 形成的一種具有大型空洞的巨環有機化合物,這些化合物經由 ¹H-NMR 光譜的研究,可證明在高溫下,其結構無法自由翻轉,這些 結果確立了 calix[4]arenes與 "cavitand" 的定義相符。

11

圖五: Cram 利用間苯二酚類的 calixarenes 合成出上述結構。

2-3 Calixarenes 的應用

由於 calixarenes 具有特定大小的分子內中空,因此在理論上,對 於不同大小之陽離子應具有形成錯合物的選擇性。學術界上便有相當 多的研究是在 calixarenes 的基本結構上引入特定之嵌合基,然後讓這 類 calixarenes 的衍生物,對核廢 料中之金屬離子進行選擇性結合的研 究,假使這類 calixarenes 的衍生物能與核廢料中具有放射性的物質形 成選擇性的鍵結,則 calixarenes 便可用於核廢料的回收和處理,這亦 即是 calixarenes 應用於金屬離子分離的一個主要研究方向。另一方面, 在文獻中曾提及 calixarene 會與再結晶所使用的溶劑分子形成複合物; 例如 *p-tert*-butylcalix[4]arene 和甲苯會形成 1:1 的複合物,而 calix[5]arene 則會和丙酮形成 1:2 的複合物,如圖六所示;這兩種 和溶劑分子形成穩定複合物的現象,顯示出 calixarenes 的分子內中空, 不僅能和離子亦可和特定分子形成主客化合物的特性。

圖六:X-ray 結晶圖 (左為 1:1 的 *p-tert*-butylcalix[4]arene 和甲苯之 複合物; 右為 1:2 的 calix[5]arene 和丙酮之複合物)。

Bohmer¹⁴ 等人發現calix[4]arenes對 Cs⁺ 有選擇性的鍵結,之後經 Harrow field¹⁵ 的研究團隊透過單晶繞射的研究,證實除了Cs⁺之外, 同時尚有一個乙腈的溶劑分子被嵌在中空孔徑之內,如圖七(a)。接著 Shinkai¹⁶ 團隊在研究全醚化的calix[4]arenes對金屬離子的配位時亦 發現,當醚化的烷基為丙基時,金屬離子受限立體障礙的關係,並不 從下端與酚氧原子配位,而是藉由正電荷與相互平行的苯環π軌域, 以類似一個"三明治"結構相互作用,而嵌合在calix[4]arenes的分子中 空內,如圖七(b)所示。

圖七:(a) 乙腈分子嵌合在杯形中空內。

(b)金屬離子因正電荷相互作用,嵌合在兩個平行的苯環中間。
之後, R. Ungaro¹⁷利用 25,27-bis(2-propyloxy)calix[4]arenecrowns-6 來對 Cs⁺進行萃取時,亦發現 Cs⁺離子會包含在以
"1,3-alternate" 組態存在之 calix[4]arenes 衍生物的結構中,如圖八所示。

圖八: 25,27-Bis(2-propyloxy)-calix[4]arene-crowns-6 和 Cs⁺離子複合

物的 X-ray 結構。

文獻中提到如果將 H₃AlNMe₃和1,3-dimethoxy-calix[4]arenes反應時,會形成Al-H鍵在中空外或中空內的兩種配位異構物,圖九所示¹⁸; 其中,又以位於中空內配位的異構物穩定。

圖九:1,3-Dimethylcalix[4]arenes 與Al的兩種配位異構物。

Hascall¹⁹ 研究團隊利用1,3-di(trimethylsilane)calix[4]arenes和 Ge[N(SiMe₃)₂]₂反應,同樣顯示出Ge處於中空內和中空外的兩種配位 異構物的相同結果,此兩種異構體的單晶結構亦已分別測定出如圖十 所示。這些研究成果確立了金屬離子和calixarenes可形成不同結構的 主客複合物。

圖十:1,3-Di(trimethylsilane)calix[4]arenes 和 Ge 的配位異構物。

 $Izatt^{20}$ 曾利用不同環數的*p-tert*-butylcalixarenes和金屬離子做透水 性轉移的研究,其結果如表二所示。雖然在中性溶液中,這些 calixarenes並沒有轉移陽離子的能力;但在鹼性溶液中,calixarenes 不但顯示出其轉移陽離子的能力,且對陽離子有 $Cs^+>Rb^+>K^+>$ $Na^+>Li^+$ 的選擇性。

表二:鹼性溶液中 *p-tert*-butylcalixarenes 對陽離子的轉移,常數 (單位: 10⁸ moles/sec • m²)。

Source Phase	<i>p-tert</i> -butylcalix[n]arene			
	4	XHX 6	8	
LiOH		~~~~10 <u>≇</u> 1	2.0 ±0.2	
NaOH	1.5 ±0.4	書館135+2	9 ±2	
КОН	0.4 ±0.1	//ture 22 ±3	10.0 ±0.4	
RbOH	5.6 ±0.7	71 ±8	340 ±20	
CsOH	260 ±90	810 ±10	1200 ±90	

而 Zhong²¹ 亦曾利用分子下緣含有類似冠狀醚官能團之 *p-tert*-butylcalix[4]arenes和不同金屬離子做離子鍵結的研究,如圖十 一所示,而其與金屬離子結合能力,如表三所示。由表中顯示出下緣 鍵結 crown ether 的 calix[4]arenes化合物**10a**和**10b**,對 K⁺ 的選擇性 遠大於 Na⁺及 Li⁺; 但鍵結於兩個 calix[4]arenes分子下緣的冠狀醚類 化合物9a和9b,则是因為分子內空間過大而沒有明顯的選擇性。

9 a. R=H

b. R=CH₃

10 a. R=H

b. R=CH₃

圖十一:下緣含有類似冠狀醚官能團之 p-tert-butylcalix[4] arenes。

Jersity Lin

表三:Calixarene crown ethers 與金屬離子之結合能力 (AssociationConstants, K_a)。

Heat	$K_a \times 10^{-3}$, mol ⁻¹ · L			
HOST	Li ⁺	Na ⁺	\mathbf{K}^+	$\mathrm{NH_4}^+$
9a	1.2	0.9	1.1	0.9
9b	52.6	61.8	32.5	22.5
10a	2.2	2.3	30.0	49.6
10b	15.0	14.7	93.7	21.8

Shinkai²² 則是利用水溶性的 *p*-sulfonatocalixarenes 來萃取海水中的 UO_2^{2+} ,其結合常數約為 10^{18} - 10^{19} mol·dm⁻³;同時相對於其它金屬,這種 calixarene 對 UO_2^{2+} 的結合選擇比約為 10^{12} - 10^{17} ,如表四所

示。此一結果顯示了這一類的 calixarene 衍生物對 UO₂²⁺有極高的穩 定性和選擇性,而此特性應可應用在 UO₂²⁺的萃取濃縮上。

表四:水溶性 calixarenes 對金屬離子之穩定常數(stability constant,log

Metal			$(CH_2)_0$ $(CH_2)_0$		
UO ₂ ²⁺	19.2	18.7	16.4		
Mg ²⁺	-	sity Lib.	-		
Ni ²⁺	2.2	×K 3.2	-		
Zn^{2+}	5.5	wr.5.6	-		
Cu ²⁺	8.6	書館 6.7	-		
Culture Unit					

k) •

而 W. Aeungmaitrepirom²³ 則 發 現 了 在 酸 性 溶 液 中, diammoniumcalix[4]arenes(11)對 Se(VI) 有較高的選擇性,發現當 pH=2.6 時,可以用陰離子形式保持 Se(VI)並防止化合物 11 的去質子 化行為,且於該 pH 值,其化合物 11 的濃度約為 4×10⁻⁴ M 可達到 5× 10⁻⁵mole • L⁻¹Se(VI)的定量萃取。

此外,A. Savithri²⁴ 合成出擬肽衍生物的 calix[4]arenes,例: tripeptoidcalix[4]arenes 和 tetrapeptoidcalix[4]arenes,可容納多價基團 且具有超分子化學的應用潛力,更對此系列化合物與金屬離子/陽離 子的鍵結進行研究,從 UV 吸收光譜圖及顏色觀察到化合物 12 在乙 腈溶液中對 Cu²⁺離子具選擇性變化,此結果可為工業和環境領域的 最佳宿主分子的設計提供堅實的基礎。

12

19

Zhang²⁵利用 1,3-[(2,4-diethylheptylethoxy)oxy]-2,4-crown-6-

calix[4]arene 合成出超分子聚合物複合材料,並在硝酸濃度為 0.3-7.0 毫莫耳的環境下,對鹼金屬和鹼土金屬進行吸附實驗的測試,發現含 有修飾邊的 calix[4]arene 複合材料對 Cs(I)具高選擇性及高吸附性,這 對降低潛在放射性危害的物質有極大效用。

而 P. Thiampanya²⁶ 合成出化合物 **13** 作為陰離子的傳感器,並對 F, Cl, Br, I, CH₃CO₂, PhCOO, NO₃, PF₆, ClO₄和 H₂PO₄進行 UV 光 譜測試,發現化合物 **13**僅一條吸收帶在 395 nm 處,而加入上述陰離 子後,其F, CH₃CO₂, PhCOO, H₂PO₄的吸收帶從 395 nm 到約 600 nm, 呈紅位移,這些紅位移的幅度順序為 F>CH₃CO₂>PhCOO>H₂PO₄, 顏色變化則由淺橙色變為淺天藍色,藍色,淺粉色和淺黃色。

13

第三章 Calixarenes 的合成

如要深入研究 calixarenes 在主客化合物中的化學行為時,須先 製備出多種官能基化之 calixarenes,以利於討論主客化合物之穩定性、 選擇性及催化性。一般合成 calixarenes 的方式分別為一步合成法、 多步合成法及官能基化法三種。這三種合成方式各有其優缺點:一步 合成法雖然簡單,但所能使用之對位取代酚的種類卻很少;多步合成 法雖可得到多種對位官能基取代及環數大小不同的 calixarenes,但由 於合成步驟過於繁多而造成產率偏低;官能基化法則可將一步合成法 及多步合成法的缺點加以改進,但並非所有的官能基皆能用此法轉換 得到,則是官能基化法的最大缺點。

3-1 一步合成法

Zinke^{3,27} 於1940年在氫氧化鈉的催化條件下,使用多種不同對位 取代酚和甲醛水溶液,先將反應溫度設定在50-55℃,然後加熱至 110-120℃,最後將反應溫度維持在200℃反應數小時,產物經分離可 得到一些融點極高、溶解度極差的化合物。其中*p-tert*-butylphenol和 甲醛反應後的主要產物,經醋酸酯化後測得其分子量為873,這間接 證明此聚合產物為一環狀四合物,因此 Zinke便假設在相同的反應條 件下,其它對位取代酚和甲醛聚合後之產物亦為環狀四合物。而
Patrick 和 Egan²⁸使用類似的反應條件,將不同的對位取代酚,聚甲 醛和三級丁醇鉀(potassium *tert*-butoxide)在 tetralin 中迴流六至八小 時,所得的聚合物經質譜儀分析後,亦可證實為環狀四合物。但此兩 種一步合成法所得到的對位取代之 calix[4]arenes 的產率都不高,並 且在分離和純化上都有相當的難度。

近年來,Gutsche²⁹和其工作伙伴發現,如把已成環的 p-tert-butylcalix[8]arene(3)與適量的三級丁醇鉀(potassium tert-butoxide)在二苯醚(diphenyl ether)中迴流,可得到產率約40%之 p-tert-butylcalix[4]arene(1)。而p-tert-butylcalix[8]arene(3)可以很容易 的由對位三級丁基酚、聚甲醛和氫氧化鉀以45:75:1 的比例,在二 甲苯(xylene)中聚合得到,且其產率高達 80%以上;但如果將此一 聚合反應的驗量大幅增加,使反應物的比例變為 20:40:9 時,其 最終產物將變為環數較小之p-tert-butylcalix[6]arene(2),且其產率也可 達到 70%以上。

1989年,Gutsche³⁰ 又 提 出 另 一 種 更 簡 便 合 成 p-tert-butylcalix[4]arene 的方法:首先將p-tert-butylphenol 與甲醛水 溶液及適量的氫氧化鈉水溶液,在油浴中加熱八小時,得到黃綠色的 固體產物;然後將此產物磨碎乾燥後,再置於二苯醚(diphenyl ether) 中迴流,便可得到產率約 40 % 左右的環狀四合物;而此一步合成 法亦為本實驗室目前所採用之標準合成法。

利用一步合成法所合成出來的 *p-tert*-butylcalixarenes 大多為偶數 環,而奇數環之 *p-tert*-butylcalixarenes 其形成較為困難。Ninagawa 和 Matsuda³¹ 曾延用 Patrick 和 Egan 的方法,但將其反應條件改變為 先在 55°C 中加熱六小時,然後再加熱至 150°C 反應六小時,最後利用 管柱色層分析法分離,則可分離得到少量的 *p-tert*-butylcaix[5]arene。 同年,Nakamoto 和 Ishida³² 亦提出 *p-tert*-butylcaix[5]arene 的合成方 法,他們是將 Gutsche 所使用的溶劑,改為 1,4-環二氧己烷 (1,4-dioxane),在迴流三十小時之後,再利用管柱色層分析法分離, 便可得到 *p-tert*-butylcalix[7]arene,但是此兩種方法所得到的產率皆

3-2 多步合成法

在1956年, Hayes 和Hunter³³ 共同提出一套多步合成法來合成 calixarenes, 首先將對位甲基酚(p-cresol)的一個鄰位進行溴化反應, 然後利用鹼催化在另一個鄰位上與甲醛作用進行羥甲基化,其產物再 利用酸催化和另一個對位甲基酚進行芳香烴化, 在重覆羥甲基化和芳 香烴化數次之後, 將會得到兩端的鄰位取代, 分別為溴基和羥甲基 (o-bromo-o'-hydroxymethyl)之線性四分子團14, 若將此線性四分子團 14先進行氫化脫溴然後再進行環化反應(cyclization),則可得到 p-methylcalix[4]arene 的產物15,其合成如圖十二所示。而Kammerer³⁴ 重覆Hayes和Hunter的合成步驟,製備出一系列的 calixarenes其取代 基包含甲基和三級丁基,而環數則有四環16a-e、五環17a-c、六環18a-c 和七環19,如圖十三所示。

這些合成結果,證明了 Hayes 和 Hunter 的合成法之可行性;但也 由於步驟過於繁多,進而造成產物的產率偏低,因此 Bohmer、 Chhim 和 Kammerer³⁵; Moshfegh 和 Hakimelahi³⁶;以及 Gutsche³⁷便分別設計出一些步驟較少的 convergent 式多步合成法。 Bohmer, Chhim 和 Kammerer 是將 2,6-bishalomethylphenol 和結構 20 的線狀三聚合物進行縮合反應,以得到不同官能基的 calix[4]arenes,如圖十四之流程所示。這一個流程雖然反應步驟減少, 但在成環的過程中產率則僅有 10-20%。

圖十二:Hayes 和 Hunter 的多步合成法之流程。

圖十三:Kammerer 利用 Hayes 和 Hunter 的多步合成法所合成之 calixarenes。

圖十四: Bohmer, Chhim 和 Kammerer 的多步合成法之流程。

而 No 和 Gutsche 則發展出一套四個步驟的合成法,首先將對 苯基苯酚(p-phenylphenol)和甲醛在適當條件下形成如結構21的化合 物,然後再將化合物21與兩倍量的對位取代酚進行縮合反應得到如結 構22的線狀四合物;接著化合物22可再進行單一的羥甲基化,並利用 酸催化進行環化反應,即可得到對位不同取代的 calix[4]arenes24, 如圖十五之流程所示。

3-3 官能基化法

一步合成法和多步合成法均有其特定的優缺點,而Gutsche^{11,38,39} 所提出的 calixarenes 的官能基化法則是擷取此兩種方法的優點。但 在還沒進行官能基化法之前,必需先合成出對位無取代的 calixarenes, 其製備的方法為在不同的反應條件下先將*p-tert*-butylphenol 和甲醛 利用一步合成法製備出*p-tert*-butylcalixarenes,然後再以三氯化鋁進 行去烷基反應 (de-alkylation)⁴⁰,即可得到對位無取代基的 calixarenes。

經過 Gutsche 和其它研究單位的發展,官能基化法已可分別針對 calix[4]arenes 的下緣(low rim,苯酚的羥基)或上緣(upper rim,苯酚

的對位)進行官能基化。目前已經有三種主要方法可在 calixarenes 的 上緣引入官能基:第一種方法為芳香族親電子的取代反應; 根據文獻 指出,已有 -SO₃Na, -N=N-Ar 及 -CH₂Cl 等官能基被導入對位無取 代 calixarenes 的上緣,而得到新的對位取代 calixarenes 的例子,如 圖十六所示。例如 Shinkai^{9,41} 將 calixarenes 利用親電子取代法加以 官能基化,合成出了水溶性 calixarenes,其流程如圖十七所示。此外 Nimura⁴² 亦提出利用偶氮偶合親電子取代反應,將-N=N-Ar 導入對 位 無 取 代 的 calix[6]arenes 上 緣 , 而 得 到 對 位 偶 氮 取 代 的 calix[6]arenes 。

圖十六:官能基化法中親電子取代反應之多官能基化法。

-CH₂Cl

圖十七:Shinkai 等所提出多官能基化法之流程。

書館

第二種方法為 Claisen rearrangement 的重組反應:先將 calix[4]arene 轉換成丙烯醚化的衍生物,再進行 Claisen重排反應, 即可得到*p*-allylcalixarene;若再將對位丙烯基進行不同官能基轉化, 則可得到各種對位不同取代的 calixarenes, 其反應流程如圖十八所示。

圖十八: Gutsche 和其工作伙伴所提出之官能基化法之一。

Jersity Lin

第三種方法為 Mannich 的加成反應:如將 calix[4]arene 與甲醛 及二烷基胺(dialkylamine)作用,便可得到 Mannich 的加成產物 dialkylaminomethylcalix[4]arene;如對此化合物進行完全的甲基化, 並將所得到的四級胺鹽與不同的親核性試劑作用,則化合物25便可經 由*p*-quinonemethid 的中間體,而轉換得到各種對位上有不同官能基 化的 calix[4]arenes(26),如圖十九所示。

在 1986年間, L. Rosik⁴³ 在對 CIO₂進行氧化研究時,曾成功的 將 calix[4]arene 氧化成 calix[4]quinone,但因 calix[4]quinone 的溶解 度問題,限制住了 calix[4]quinone 的進一步研究及發展。之後 Gutsche 和 Reddy⁴⁴ 利用三氟醋酸鉈來氧化 calix[4]arenes 的醚類衍生物,並 藉 由 可 溶 於 一 般 有 機 溶 劑 之 calix[4]monoquinone 和 calix[4]diquinone 的 中 間 產 物 ,先後 製 備 出 一 全 新 系 列 的 calix[4]diquinone 的 中 間 產 物 ,先後 製 備 出 一 全 新 系 列 的 calix[4]arenes 衍生物,而此一經由 calix[4]quinones 的合成方法,漸 漸進化成為 calix[4]arene 的第四種官能基化法。

至於在 calix[4]arene下緣的修飾,主要有兩種途徑可對苯酚的羥

基進行官能基化;第一種方法為 Williamson 的醚化反應,另一種方 法則是苯酚羥基的酯化反應。

其中Calixarenes醚類衍生物是研究最完整的類別,首先被合成出 來的 Calixarenes醚類衍生物是下緣完全取代的四醚化產物,之後 Reinhoudt⁴⁵報導了1,3-對位雙烷基醚類衍生物的以一步合成法,但單 烷基醚類及三烷基醚類的衍生物,則必須倚賴多步合成法來製備。在 多年來的研究和發展下,本實驗室在多年來的研究中發現,在使用甲 醇鈉當作鹼時,能夠一步合成出單烷基醚化之calix[4]arenes。

如將單烷基醚化之calix[4]arenes與苯甲醯基氯在冰浴下反應,可 生成1-單烷基醚化-3-苯甲醯基酯化calix[4]arenes。

第四章 1-單烷基醚化-3-苯甲醯基酯化 calix[4]arene 的合成

本實驗室以 calix[4]arene 為起始物,並使用甲醇鈉做為下緣醚化 反應的鹼,順利合成出一系列單烷基醚化的 calix[4]arenes。且本實驗 室發現在適當的反應條件下,單烷基醚化的 calix[4]arenes 在進行苯 甲酸酯化時,可得到一系列 1-單烷基醚化-3-苯甲醯基酯化 calix[4]arenes 如圖二十。

圖二十:1-單烷基醚化-3-苯甲醯基酯化 calix[4]arenes 的合成途徑。

4-1 Calix[4]arene 的製備

雖然最原始的 calix[4]arene 起始物,可直接向化學品供應商購買, 但本實驗室所使用的對位無取代之 calix[4]arene(6),是經由一個三步 驟的合成法而製備出來的。首先將 *p-tert*-butylphenol 與 37 % 甲醛 水溶液,在定量的氫氧化鈉催化下,於油浴中加熱兩小時,以得到黃 綠色的固態聚合前驅物;將此前驅物先行磨碎,在室溫下乾燥後,再 於 適 量 的 二 苯 醚 (diphenyl ether) 中 加 熱 迴 流 , 即 可 獲 得 *p-tert*-butylcalix[4]arene,其產率約 40-50%;如將所得之白色粉末產 物,利用三氯化鋁(AlCl₃)做催化劑,進行反向的 Friedel-Crafts 反應, 以移除 *p-tert*-butylcalix[4]arene 對位上之三級丁基,可得到產率約 65-75% 之對位無取代的 calix[4]arene,如圖二十一所示。

圖二十一: Calix[4]arene 的合成。

此一標準合成法,有三大特點:第一,每個步驟的反應時間都可 在兩小時內完成;第二,在進行反應時,每個反應步驟的量均可達到 數百公克;第三,步驟二之產物的產率和純度均甚高,因此,產物不 必經由甲苯做再結晶純化,便可直接進行 de-tert-butylation 的反應, 而得到最終產物對位無取代的 calix[4]arene。此三步驟合成法的總產 率大約為 25%;亦即為在此一流程下,本實驗室可於一個反應的流 程中,將一百公克的 p-tert-butylphenol(2013 年 Acros 價格:1 kg, US \$ 18.6)轉換成二十多公克的 calix[4]arene(2013 年 Acros 價格:1 g, US \$ 59.6)。

4-2 單烷基醚化 calix[4]arenes 的製備

本實驗室在過去的研究中發現,當使用特定用量的甲醇鈉做為反應的驗時,calix[4]arene可直接和鹵化烷類反應,而生成單烷基醚化之 calix[4]arene,其產率約為 60-70%,如圖二十二所示。

圖二十二:單烷基醚化 calix[4]arenes 的合成。

詳細研究 calix[4]arenes 的單烷基醚化後,發現反應後的產物除了 單烷基醚化的 calix[4]arenes 外,通常仍會存有未反應之 calix[4]arene 和少量過度反應的 1,3-雙烷基醚化之 calix[4]arenes,故進行單烷基醚 化反應的最佳條件,必須是依照鹵化烷類的反應性,分別調控 1.7-1.9 毫莫耳當量之甲醇鈉和過量的鹵烷類在乙腈中迴流 2-24 小時之間。 而單烷基醚化之 calix[4]arenes 可利用氯仿及甲醇再結晶,以獲得純 化 的 單 烷 基 醚 化 之 calix[4]arenes 。其 中 單 苯 甲 基 醚 化 之 calix[4]arenes 利用丙酮再結晶,以獲得純化的單苯甲基醚化之 calix[4]arenes 效果較好。

4-2-1 單烷基醚化 calix[4]arenes 的¹H-NMR 光譜分析

在 calix[4]arene 的 H-NMR 光譜上,於 $\delta10.17 \, f - \bar{x}$ 酚之羥基 (ArO<u>H</u>)的單峰,而在 $\delta7.03-7.06 \, \pi \, \delta6.72-6.75$ 則有兩組分別為 doublet 及 triplet 的苯酚上氫之訊號。但 calix[4]arene 在經單烷基醚化後, 其 ¹H-NMR 會因對稱性的降低,而有大幅的改變。文獻曾提出 ⁴⁶ 單 丙烯基醚化 calix[4]arene 的苯酚羥基氫,在 ¹H-NMR 光譜中會在 $\delta9.71$ 與 $\delta9.32$ 出現積分值比為 1:2 的兩個單峰訊號,這是因為苯 酚羥基被單烷基醚化後,破壞了原本的對稱性,因此形成兩種處在不 同環境的結果。而 calix[4]arene 環中的亞甲基氫(ArC<u>H</u>₂Ar),亦會因 對稱性的關係,在 $\delta3.3-3.5$ 與 $\delta4.1-4.4$ 之間產生四組積分值比為 1: 1:1:1 的 doublets,但由於在 $\delta3.3-3.5$ 之兩組 doublets 訊號重疊, 因此在光譜上只顯現出三組積分值比為1:1:2的 doublets。

我們發現所有單烷基醚化的 calix[4]arenes 皆屬於相同的對稱點 群(C_v),因此這些單烷基醚化之 calix[4]arenes 的¹H-NMR 光譜,應與 已知之 monoallyloxy-calix[4]arene 的光譜相似。即在 δ 9.3-9.7 有積分 值為 1:2 的 ArOH 的訊號,以及在 δ 3.3-3.5 與 δ 4.1-4.4 間可看見三 組 doublets,而這兩種特徵即是用來判定單烷基醚化 calix[4]arenes 的主要方法。

至於其下緣醚化官能基之取代,則可由各化合物上之單烷基醚類 所產生之特定訊號群來決定;例如化合物 27 含有在 δ4.22-4.37(q, 2H) 及 1.77-1.80(t, 3H) 的 乙基醚化之訊號,其他單烷基醚化 calix[4]arenes(28、29、30 及 31)亦可由相同方法判斷,例如 δ1.28-1.32(t, 3H), 2.17-2.23(m, 2H), 4.10-4.13(t, 2H) 為丙基醚化之訊號; δ1.11-1.16(t, 3H), 1.70-1.76(m, 2H), 2.15-2.19(m, 2H), 4.13-4.17(t, 2H) 為丁基醚化之訊號; δ4.68-4.69(d,2H), 5.51-5.54(d, 1H), 5.65-5.70(d, 1H), 6.38-6.48(m, 1H) 為丙烯基醚化之訊號;而 δ5.17(s, 2H), 7.45-7.71(m, 5H) 則是苯甲基醚化之訊號。從這些單烷基醚化 calix[4]arenes 在¹H-NMR 光譜上所呈現之不同位置的訊號及其積分 值,可以判斷這些化合物均為單烷基醚化 calix[4]arenes。而本論文僅 注 重 於 單 乙 基 醚 化 calix[4]arenes (27) 及 單 苯 甲 基 醚 化 calix[4]arenes(31)的合成。

1-單烷基醚化-3-單苯甲酸酯化 calix[4]arenes 的製備 4-3 對單烷基醚化之calix[4]arenes 27、31進行苯甲酸酯化的合成方法為先 將單烷基醚化的calix[4]arenes溶於吡啶之中,然後在冰浴下緩緩加入2 毫莫耳當量的 benzoyl chloride;在冰浴下攪拌25分鐘後,反應混合 溶液先利用減壓濃縮移除吡啶,再加入氯仿溶出產物;氯仿溶液先以 1N鹽酸移除殘餘的吡啶,再以飽和碳酸氫鈉水溶液及去離子水洗滌, 有機溶液經分離後減壓濃縮,再以氯仿和甲醇做再結晶,即可得到白 色粉狀晶體的1-單烷基醚化-3-單苯甲酸酯化之 calix[4]arenes 的產物 32、33,如圖二十三所示 ININO 27 -CH₂CH₃ 31 -CH₂Ph ÓR 3 PhCOCI C₅H₅N 32 R = -CH₂CH₃ 33 CH₂Ph ÓR ÓН C=O Ρh

圖二十三:單烷基醚化 calix[4]arenes 的單苯甲酸酯化合成。

4-3-1 1-單烷基醚化-3-單苯甲酸酯化 calix[4]arenes 的

¹H-NMR 光譜分析

觀察單苯甲基醚化單苯甲酸酯化產物 33 的 ¹H-NMR 光譜,可看 到原本苯環上之氫數,由原本的 17 個氫,增加為 22 個氫;由於酯化 後產物和起使物一樣具有相同的 C_V 對稱面,因此其亞甲基氫 (Ar C<u>H</u>₂ Ar)的訊號類似於單苯甲基醚化之起始物的四組雙峰訊號,由 此可 判 定 於 單 苯 甲 基 醚 化 calix [4] arene 的 酯 化 產 物 為 25-ethoxy-27-benzoyloxy-26,28-dihydroxycalix [4] arene (32)、

25-benzyloxy-27-benzoyloxy-26,28-dihydroxycalix[4]arene (33) •

4-4 1-單烷基醚化-3-對位甲氧基苯甲酸酯化 calix[4]arenes 的製備

對單烷基醚化之calix[4]arenes 27、31 進行對位甲氧基苯甲酸酯化的 方式,是將單烷基醚化之calix[4]arenes溶於吡啶之中,然後在冰浴下 緩緩加入2毫莫耳的p-anisoyl chloride;在冰浴下攪拌25分鐘後,反應 混合溶液先利用減壓濃縮移除吡啶,然後再加入氯仿以溶出產物;氯 仿溶液先以 1N 鹽酸移除殘餘的吡啶,再以飽和碳酸氫鈉水溶液及 去離子水洗滌,有機溶液經分離後減壓濃縮,再以氯仿和甲醇做再結 晶,即可得到黃色晶體的1-單烷基醚化-3-對位甲氧基苯甲酸酯化之 calix[4]arenes 的產物 (34、35),如圖二十四所示:

4-4-1 1-單烷基醚化-3-對位甲氧基單苯甲酸酯化

calix[4]arenes 的¹H-NMR 光譜分析

觀察單苯甲基醚化對位甲氧基苯甲酸酯化產物 35 的¹H-NMR 光譜,可看到原本苯環上之氫數,由原本的 17 個氫,增加為 21 個氫, 以及位於 δ3.9 位置的甲氧基訊號;由於酯化後產物和起始物一樣具 有相同的 C_V對稱面,因此其亞甲基氫(Ar C<u>H</u>₂ Ar)的訊號類似於單苯 甲基醚化之起始物的四組雙峰訊號。

由化合物 34 和 35 的光譜資訊,可判定出對位甲氧基苯甲酸酯化

calix[4]arene 的產物分別為:

25-ethoxy-27-(*p*-methoxybenzoyl)oxy-26,28-dihydroxycalix[4]arene(**34**) 25-benzyloxy-27-(*p*-methoxybenzoyl)oxy-26,28-dihydroxycalix[4]arene (**35**) °

第五章酯基官能基轉換動力學探討研究

本實驗室發現當 1-單烷基醚化-3-單苯甲酸酯化之 calix[4]arenes 在 K₂CO₃ 的鹼性條件下進行加熱迴流時,會生成苯甲酸酯基轉移之 產物 1-單烷基醚化-2-單苯甲酸酯化之 calix[4]arenes,因此,推論其 轉移係以如圖二十五所示的路徑進行,為了對此轉移之情形作更進一 步研究,本論文將對一系列單苯甲基醚化 calix[4]arenes 的單苯甲酸 酯化的衍生物,探討其在 K₂CO₃ 的鹼性反應下,不同醚化產物或不 同對位取代的苯甲酸醯基之轉移的動力學研究,並進一步的分離及鑑 定出轉移後的產物。

圖二十五:苯甲酸酯基其轉移之路徑圖

5-1 First Order 動力學公式的推導

關於本論文的動力學研究方面,是屬於動力學的可逆型一級反應, 相關的公式推導如下:

假設實驗一開始使用濃度 a₀的純化合物 A,經過時間 t 後,產物 Z 的 濃度為 x,此時 A 的濃度則為 a₀-x:

A 轉換成 Z 的速率為 $k_1(a_0-x_e)$, 而 Z 轉換成 A 的速率為 k_1x ,所以 Z 濃度的淨改變速率為: $\frac{dx}{dt} = k_1(a_0 - x) - k_{-1}x$

假設 Xe為Z達到平衡時的濃度,則此時濃度的淨改變速率為0:

$$\frac{dx}{dt} = k_1(a_0 - x_e) - k_{-1}x_e = 0$$

由於平衡常數 K_f= k₁/k₋₁= x_e/(a₀-x_e); 消去 k₋₁後,可得到:

$$\frac{\mathrm{dx}}{\mathrm{dt}} = \frac{\mathrm{k}_1(\mathrm{a}_0 - \mathrm{x}_\mathrm{e})}{\mathrm{x}_\mathrm{e}} (\mathrm{x}_\mathrm{e} - \mathrm{x})$$

當時間 t=0 的時候,Z的濃度 x=0;所以積分後,可得到:

$$k_1 t = \frac{x_e}{a_0} \ln \frac{x_e}{(x_e - x)}$$

5-2 1-乙基醚化-2-苯甲醯基酯化 calix[4]arenes 的製備

如將對位有不同取代的苯甲酸酯化之單乙基醚化 calix[4]arenes 32、34 溶於乙腈,然後加入約2倍莫耳當量的K₂CO₃, 並在適當的時間內加熱迴流;反應完成後,利用減壓濃縮移除溶劑, 再加入氯仿溶出產物,並以稀鹽酸和水洗滌,最後再經氯仿和甲醇做 再結晶,可分別結晶出苯甲酸醯基轉移後的不同對位取代的苯甲酸酯 化之單乙基醚化 calix[4]arenes 產物 36、37,其反應如圖二十六。

圖二十六:1-乙基醚化-2-苯甲醯基酯化 calix[4] arenes 的合成。

5-3 1-乙基醚化-2-苯甲醯基酯化 calix[4]arenes 的轉換動 力學研究

5-3-1 化合物 32 轉移化合物 36 後的動力學探討

化合物 32 溶於乙腈中,然後加入 2 倍當量度的 K₂CO₃,在鹼性 下迴流進行反應,並利用¹H-NMR 進行動力學的研究。從一系列量 測的光譜訊號中,可觀察到起始物 32 除了會隨著時間增加會轉換成 化合物 36 外,也會有水解產物生成,如圖二十七所示,其從光譜中 可看到化合物 32 的 OCH₂CH₃ 訊號(δ1.8)隨著時間增長而明顯的減少, 則化合物 36 的 OCH₂CH₃ 訊號(δ1.2)則會隨著時間慢慢增加,而水解 產物 27 的 OCH₂CH₃ 訊號也慢慢增加,但因其訊號緊接著化合物 32 的訊號,因此在積分值上無法切割。¹¹

利用¹H-NMR 積分值比例的分析方法,並藉由積分值、氫數與莫 耳數的關聯性,可推算出起始物 32 與化合物 36 及水解產物 27 的相 對含量,其結果如表五所示,將這些數據利用電腦軟體 origin 轉換 成含量百分比和時間的對照圖,可得圖二十八、圖二十九、圖三十; 如再利用電腦軟體內之 first order decay 的推計,可找出平衡時 x_e 的 數值為 0.68。進一步取 $\ln(x_e/x_e-x)$ 對時間 t 作圖,可得到斜率 0.32h⁻¹, 並進而可計算出 $k_1=8.79\times10^{-5}s^{-1}$ 。

譜(CDCl₃)

圖譜(CDCl₃)

時間/hr	轉位產物 36	起始物 30+	水 解 產 物 27
		水解產物 27	
	δ1.2	δ1.8	δ9.4
0	0	100	0
1	16.07	82.45	1.48
2	20.71	77.78	1.51
4	36.79	60.7	2.51
8	48.62	48.5	2.88
12	54.25	42.01	3.74
16	55.39	39.72	4.89
24	58.45	35.99	5.55
48	40.66	45.25	14.08

表五:化合物 32 轉化合物 36 隨時間變化積分值。

註:在 $\delta 9.4$ 位置的水解產物 27 積分值為 1.48 含有氫數為 2,依比例計算 1 個氫數 約為 0.74 的積分值,因此在 $\delta 1.2$ 與 $\delta 1.8$ 的積分值 16.07 與 82.45,經過換算後氫 數為 21.716 及 111.419,再計算過後可得到百分比。

算法:(以上表第二列的數據為例)

	以 δ9.4 為基準,每個 H 值=0.74			
	積分值	H數量	化合物莫耳數	百分比
δ1.2(轉位)	16.07	21.716	7.239	16.321
δ1.8(起始物+水解)	82.45	111.419	37.14	81.435+2.253
δ9.4(水解)	1.48	2	1	2.253

時間/hr	轉位%	起始%	水解%
0	0	100	0
1	16.312	81.435	2.253
2	21.027	76.673	2.3
4	37.814	58.316	3.87
8	49.967	45.593	4.44
12	56.359	37.813	5.828
16	58.237	34.051	7.712
24	61.892	29.293	8.815
48	47.321 ersit	28.097	24.582

解產物的百分比。

圖二十八: Benzoyl migration of

1-ethoxy-3-benzoyloxycalix[4]arenewith hydrolyzed product 51

時間/hr	轉位%	起始%	
0	0	100	
1	16.688	83.312	
2	21.522	78.478	
4	39.336	60.664	
8	52.289	47.711	
12	59.847	40.153	
16	63.104	36.896	
24	67.875	32.125	
48	62.745	37.255	

表七:化合物32轉換成化合物36隨時間變化起始物、轉位百分比。

圖二十九: Benzoyl migration of

1-ethoxy-3-benzoyloxycalix[4]arenewithouthydrolyzed product

5-3-2 化合物 34 轉移化合物 37 後的動力學探討

化合物 34 溶於乙腈中,然後加入 2 倍當量度的 K₂CO₃,在鹼性 下迴流進行反應,並利用¹H-NMR 進行動力學的研究。從一系列量測 的光譜訊號中,可觀察到起始物 34 除了會隨著時間增加會轉換成化 合物 37 外,也會有水解產物生成,如圖三十一所示,從¹H-NMR 光 譜中可看到起始物 34 的 OCH₂CH₃ 訊號(81.82)隨著時間增長而明顯的 減少,化合物 37 的 OCH₂CH₃ 訊號(81.31)則會隨著時間慢慢增加,而 水解產物 27 的 OCH₂CH₃ 訊號也慢慢增加,但因其訊號緊接著化合物 34 的訊號,因此在積分值上無法切割。

利用¹H-NMR 積分值比例的分析方法,並藉由積分值、氫數與莫 耳數的關聯性,可推算出起始物 34 與化合物 37 及水解產物 27 的相 對含量,其結果如表八所示,將這些數據利用電腦軟體 origin 轉換成 含量百分比和時間的對照圖,可得圖三十二、圖三十三、圖三十四; 利用電腦軟體內之 first order decay 的推計,可找出平衡時 x_e 的數值 為 0.76。進一步取 $\ln(x_e/x_e-x)$ 對時間 t 作圖,可得到斜率 0.12h⁻¹,並 進而可計算出 $k_1=3.35\times10^{-5}s^{-1}$ 。

而 1-乙基醚化-3-苯甲醯基酯化 calix[4]arenes 轉移 1-乙基醚化-2-苯甲醯基酯化 calix[4]arenes 的 k₁ 值與相對速率,如表十一。

譜(CDCl₃)

圖譜(CDCl₃)

時間/hr	轉位產物 37	起始物 34+ 水解產物 27	水解產物 27
	δ1.4	δ1.8	δ9.4
0	0	100	0
1	6.42	92.58	1.01
2	12.55	85.91	1.54
4	20.9	77.38	1.72
8	31.29	66.79	1.92
16	48.62	49.09	2.29
24	54.69	42.95	2.36
32	59.34	37.78	2.88
40	63.65 ersit	V Lib 32.96	3.38
48	65.82	30.96	3.22
72	66.01	27.6	6.38
96	62.5	27.6	9.9

表八:化合物 34 轉化合物 37 隨時間變化積分值。

註:在 δ9.4 位置的水解產物 **31** 積分值為 1.01 含有氫數為 2,依比例計算 1 個氫數 約為 0.505 的積分值,因此在 δ1.4 與 δ1.8 的積分值 6.42 與 92.58,經過換算後氫 數為 12.713 及 183.327,再計算過後可得到百分比。

算法:(以上表第二列的數據為例)

	以 δ9.4 為基準,每個 H 值=0.505			
	積分值	H數量	化合物莫耳數	百分比
δ1.4(轉位)	6.42	12.713	4.238	6.485
δ1.8(起始物+水解)	92.58	183.327	61.109	91.985+1.53
δ9.4(水解)	1.01	2	1	1.53
時間/hr	轉位%	起始%	水解%	
-------	--------------	---------	-------------------	
0	0	100	0	
1	6.485	91.985	1.53	
2	12.746	84.908	2.346	
4	21.266	76.109	2.625	
8	31.903	65.161	2.936	
16	49.759	46.731	3.51	
24	56.011	40.363	3.626	
32	61.1	34.452	4.448	
40	65.883	28.869	5.248	
48	68.009	27	4.991	
72	70.517 ersit	19.253	10.223	
96	69.364	14.156	16.48	
400		mm @		
100-	12. B	主命/ミ/ →	starting material	

物的百分比。

圖三十二: Benzoyl migration of 1-ethoxy-3-(*p*-methoxybenzoyl)

oxycalix[4]arenewith hydrolyzed product

時間/hr	轉位%	起始%
0	0	100
1	6.586	93.414
2	13.052	86.948
4	21.839	78.161
8	32.868	67.132
16	51.569	48.431
24	58.118	41.882
32	63.944	36.056
40	69.532	30.468
48	71.582	28.418
72	78.553	21.447
96	83.051	16.949

表十:化合物 34 轉 37 隨時間變化起始物、轉位的百分比。

圖三十三: Benzoyl migration of 1-ethoxy-3-(*p*-methoxybenzoyl)

oxycalix[4]arenewithout hydrolyzed product

表十一:在乙基醚化下,苯甲醯基轉位之 k1 值及相對速率。

單乙基醚化條件下	\mathbf{k}_1	相對速率
苯甲酸	8.7833×10 ⁻⁵ s ⁻¹	1
甲氧基苯甲酸	$3.3556 \times 10^{-5} \mathrm{s}^{-1}$	0.382

5-41-單苯甲基醚化-2-苯甲醯基酯化 calix[4]arenes 的製備

將對位有不同取代的1-單苯甲基醚化-3-苯甲酸酯化之 calix[4]arenes 33、35 溶於乙腈中,然後加入約2倍莫耳當量的 K₂CO₃, 並在適當的時間內加熱迴流;反應完成後,先利用減壓濃縮移除溶劑, 再加入氯仿溶出產物,並以 IN 鹽酸和洗滌,最後再以氯仿和甲醇做 再結晶,可分別結晶出苯甲酸醯基轉移後的不同對位取代的苯甲酸酯 化之單乙基醚化 calix[4]arenes 產物 38、39,其反應如圖三十五。

圖三十五:1-苯甲基醚化-2-苯甲醯基酯化 calix[4] arenes 的合成。

5-5 1-單苯甲基醚化-2-苯甲醯基酯化 calix[4]arenes 的轉換動力學學研究

5-5-1 化合物 33 轉移化合物 38 後的動力學探討

化合物 33 溶於乙腈中,然後加入 2 倍當量度的 K₂CO₃,在鹼性 下迴流進行苯甲酸酯化的轉移反應,並利用¹H-NMR 進行動力學的研 究。從一系列量測的光譜訊號中,可觀察到起始物 33 除了會慢慢轉 換成化合物 38 外,也會有水解產物 31 生成,如圖三十六所示,從 ¹H-NMR 光譜中可看到起始物 33 的(Ar'H)訊號(δ8.35)隨著時間增長 而明顯的減少,化合物 38 的(Ar'<u>H</u>)訊號(δ9.27)會隨著時間慢慢增加, 而水解產物 31 的(Ar'<u>H</u>)訊號也慢慢增加。

利用¹H-NMR 積分值比例的分析方法,並藉由積分值、氫數與莫 耳數的關聯性可推算出起始物 33 與化合物 38 的相對含量,其結果如 表十二所示,將這些數據利用電腦軟體 origin 轉換成含量百分比和 時間的對照圖,可得圖三十七、圖三十八、圖三十九;如再利用電腦 軟體內之 first order decay 的推計,可找出平衡時 x_e 的數值為 0.98。 取 $ln(x_e/x_e-x)$ 對時間 t 作圖,可得到斜率 2.27h⁻¹,並進而可計算出 $k_1=6.31\times10^{-4}s^{-1}$ 。

(CDCl₃)

時間/hr	轉位產物 38	起始物 33	水解產物 31
	δ9.27	δ8.35	δ9.55
0	0	100	0
1	19.55	78.09	2.36
2	33.21	62.57	4.22
4	54.87	36.74	8.39
8	68.68	17.32	14.01
16	71.92	10.81	17.26
24	71.41	7.96	20.63
32	70.97	6.72	22.30
40	69.81	6.80	23.39
48	66.34	5.82	27.84

表十二:化合物 33 轉化合物 38 隨時間變化積分值。

註:在 δ9.27 及 δ9.55 的位置各代表轉位與水解之產物含氫數皆為 1,而其中在 δ8.35 位置代表起始物的 peak 含氫數為 2,因此再換算百分比時需特別留意。

時間 1hr	積分值	H數量	化合物莫耳數	百分比
δ9.27(轉位)	19.55	1	19.55	32.07
δ8.35(起始物)	78.09	2	39.045	64.06
δ9.55(水解)	2.36	1	2.36	3.87

算法:(以上表第二列的數據為例)

時間/hr	轉位%	起始%	水解%
0	0	100	0
1	32.07	64.06	3.87
2	48.33	45.53	6.14
4	67.22	22.50	10.28
8	75.81	9.48	15.34
16	76.03	5.71	18.26
24	74.37	4.14	21.49
32	73.45	3.47	23.08
40	72.27	3.52	24.21
48	68.33	1 × 3.00	28.67

產物的百分比。

圖三十七: Benzoyl migration of

1-benzyloxy-3-benzoyloxycalix[4]arenewith hydrolyzed product

表十四:化合物 33 轉化合物 38 隨時間變化起始物、轉位百分比。

圖三十八: Benzoyl migration of

1-benzyloxy-3-benzoyloxycalix[4]arenewithout hydrolyzed product

5-5-2 化合物 35 轉移化合物 39 後的動力學探討

化合物 35 溶於乙腈中,然後加入2倍當量度的 K₂CO₃,在鹼性 下迴流進行苯甲酸酯化的轉移反應,並利用¹H-NMR 進行動力學的 研究。從一系列量測的光譜訊號中,可觀察到起始物 35 除了會慢慢 轉換成化合物 39 外,也會有水解產物 31 生成,如圖四十所示,其從 光譜中可看到化合物 38 的(Ar'H)訊號(δ8.35)隨著時間增長而明顯的 減少,則化合物 39 的(Ar'H)訊號(δ9.08)會隨著時間慢慢增加,而水 解產物 31 的(Ar'<u>H</u>)訊號也慢慢增加。

利用¹H-NMR 積分值的比例的分析方法,並藉由積分值、氫數與 莫耳數的關聯性可推算出化合物 35 與化合物 39 的相對含量,其結果 如表十五所示,在將這些數據利用電腦軟體 origin 轉換成含量百分比 和時間的對照圖,可得圖四十一、圖四十二、四十三;如再利用電腦 軟體內之 first order decay 的推計,可找出平衡時 x_e 的數值為 1.02。 取 $ln(x_e/x_e-x)$ 對時間 t 作圖,而得到斜率 0.66h⁻¹,並進而可計算出 $k_1=1.84 \times 10^{-4}s^{-1}$ 。

而 1-苯甲基醚化-3-苯甲醯基酯化 calix[4]arenes 轉移 1-苯甲基醚 化-2-苯甲醯基酯化 calix[4]arenes 的 k₁ 值與相對速率,如表十八。

69

(CDCl₃)

時間/hr	轉位產物 39	起始物 35	水解產物 31
	δ9.21	δ8.35	δ9.08
0	0	100	0
1	4.87	76.78	0
2	9.49	59.84	0
4	15.19	37.25	1.73
8	20.16	14.71	1.80
16	21.19	4.85	2.23
24	22.06	2.73	2.80
32	22.51	2.68	3.61
40	22.91	2.48	6.09
48	20.55 Versit	2.25	8.45

表十五:化合物 35 轉化合物 39 隨時間變化積分值。

註:在 δ9.08 及 δ9.21 的位置各代表轉位與水解之產物含氫數皆為1,而其中在 δ8.35 位置代表起始物的 peak 含氫數為2,因此再換算百分比時需特別留意。

算法:(以上表第二列的數據為例)

時間 1hr	積分值	H數量	化合物莫耳數	百分比
δ9.21(轉位)	4.87	1	04.87	11.23
δ8.35(起始物)	76.78	2	38.39	88.74
δ9.08(水解)	0	1	0	0

表十六:化合物 35 轉化合物 39 隨時間變化起始物、轉位產物、水解

時間/hr	轉位%	起始%	水解%
0	0	100	0
1	11.23	88.74	0
2	24.08	75.92	0
4	43.8	53.71	2.49
8	70.95	25.88	3.17
16	85.69	9.8	4.51
24	88.86	5.5	5.64
32	87.74	5.22	7.04
40	84.24	4.56	11.20
48	79.34 Jersit	V Lib, 4.35	16.31

產物的百分比。

圖四十一: Benzoyl migration of 1-benzyloxy-3-(p-methoxybenzoyl) oxycalix[4]arenewith hydrolyzed product

時間/hr	轉位%	起始%
0	0	100
1	11.26	88.74
2	24.08	75.92
4	44.92	55.08
8	73.27	26.73
16	89.73	10.27
24	94.17	5.83
32	94.38	5.62
40	94.87	5.13
48	94.81	5.19
	A A A A A A A A A A A A A A A A A A A	

比。

圖四十二: Benzoyl migration of 1-benzyloxy-3-(*p*-methoxybenzoyl) oxycalix[4]arenewithout hydrolyzed product

圖四十三: Benzoyl migration of 1- benzyloxy -3-(*p*-methoxybenzoyl)

oxycalix[4]arenewithout hydrolyzed product

表十八:在苯甲基醚化下,苯甲醯基轉位之 ki值及相對速率。				
單苯甲基醚化條件下 k ₁ 相對速率				
苯甲酸	6.3131×10 ⁻⁴ s ⁻¹	1		
甲氧基苯甲酸	$1.8428 \times 10^{-4} s^{-1}$	0.2919		

結論

本論文最主要目的為合成一系列未曾被報導過的 1-烷基醚化-2-苯甲酸酯化 calix[4]arenes 的衍生物,其合成方式為將單烷基醚化 calix[4]arenes27 及 31 溶於吡啶中,分別與 benzoyl chloride 或 *p*-anisoyl chloride 進行酯化反應,以得到一系列的 1-乙基醚化-3-苯甲 酸酯化的 calix[4]arenes 32、34 與 1-苯甲基醚化-3-苯甲酸酯化的 calix[4]arenes 33、35。將這些酯化衍生物和 K₂CO₃在 CH₃CN 中加 熱迴流,反應後產物,以再結晶方式進行純化。如再結晶過程中,因 起始物 32、34、33 或 35 的分子對稱性較好,會先結晶出來,再對母 液進行第二次再結晶時,方可分別得到純度較高的 1-乙基醚化-2-苯 甲酸酯化 calix[4]arene(36)、1-乙基醚化-2-甲氧基苯甲酸酯化 calix[4]arene(37)、1-苯甲基醚化-2-苯甲基酯化 calix[4]arene(38)和 1-苯甲基醚化-2-甲氧基苯甲酸酯化 calix[4]arene(39)。

如果利用¹H-NMR 來研究在不同反應時間下,1-乙基醚化-3-苯甲 醯基酯化 calix[4]arene 或 1-苯甲基醚化-3-苯甲醯基酯化 calix[4]arene 轉移至 1-乙基醚化-2-苯甲醯基酯化 calix[4]arene 或 1-苯甲基醚化-2-苯甲醯基酯化 calix[4]arene 的動力學時,以可逆型一級 反應的公式,經作圖可計算出在下緣有不同的酯基狀空下時,其轉換 反應速率的數值,分別是化合物 32 轉 36k₁=8.7861×10⁻⁵s⁻¹、化合物 34 轉 37k₁=3.3528×10⁻⁵s⁻¹, 化合物 33 轉 38k₁=6.3131×10⁻⁴s⁻¹、化合物 35 轉 39k₁=1.8428×10⁻⁴s⁻¹。由 k₁ 值我們可以發現,因苯甲酸酯基上對位 取代基的不同,而影響到苯甲醯基轉移的速率,而甲氧基的取代會使 得轉移速率變慢。

實驗步驟

本實驗所使用之藥品及溶劑購自 Acros Organic Chemical Co., Aldrich Chemical Co., Mallinckrodt Chemical Co., 及 Merck Chemical Co. 使用前皆不再加以純化。

¹H-NMR 光譜則是由中國文化大學 400 MHz 核磁共振光譜儀測定。

薄層層析 (TLC) 檢驗所用之矽膠片為 Macherey-Nagel aluminum sheets silica gel 60 F₂₅₄plates (absorbant thickness 0.2 mm)。

5,11,17,23-Tetra-*tert*-butyl-25,26,27,28-tetrahydroxycalix[4]arene 的前驅物

取100.00克的*p-tert*-butylphenol與62毫升37%的甲醛水溶液和38 毫升0.8N的氫氧化鈉水溶液,置於500毫升的三角錐形瓶中,並溶於 62毫升37%的甲醛水溶液和38毫升0.8N的氫氧化鈉水溶液,在油浴 中(約155°C)加熱2小時後,可產生黃綠色固體,將此固體磨碎,並在 室溫下充份乾燥後,可得到103.63克的黃綠色粉末的產物。

5,11,17,23-Tetra-*tert*-butyl-25,26,27,28-tetrahydroxycalix[4]arene (1)

取 60.00 克的前驅物置於圓底燒瓶內,加入 220 毫升的 diphenyl ether,並利用加熱包加熱並以磁石與加熱板加以攪拌(加熱時,溶液 會逐漸變成棕黑色且有大量氣泡產生),待溫度到達約 255 ℃,再繼續加熱迴流 90 分鐘。溶液冷卻後,加入 200 毫升的 n-hexane,持續 攪拌 1 小時,即有淺灰色粉狀固體產生,將此固體過濾收集,並以 200 毫升的 n-hexane 洗滌,可得到 29.94 克的淺灰色片狀粉末(產率 50%)。

25,26,27,28-Tetrahydroxycalix[4]arene (6)

取16.20 克(25.0 mmol)的 *p-tert*-butylcalix[4]arene(1)及14.10(150 mmol)的苯酚置於150 毫升的Toluene中,再加入20.50 克(154 mmol)的 AlCl₃ 並在室溫下攪拌1小時。反應後,先加入250 毫升的冰水, 再以分液漏斗分離出有機層,利用減壓濃縮去除溶劑,再加入 methanol 強迫沉澱,可得白色固體,將此固體加入氯仿使其溶解後, 利用甲醇做再結晶,得到7.25 克的白色晶體(產率68%)。

25-Ethoxy-26,27,28-trihydroxycalix[4]arene (27)

取 1.60 克(3.77mmol)的 calix[4]arene(6)與 0.40 克(7.41 mmol)的 NaOCH₃ 和 3.0 毫升(5.85 克, 37.51 mmol) 的 iodoethane,於 150 毫 升的 acetonitrile 中迴流反應 21 小時,經減壓濃縮後,再加入去離子 水強迫沉澱,便可生成白色固體沈澱,再過濾收集此固體,將此固體 以 aectone 溶解後,加入 methanol 做再結晶,得到 1.01 克的白色晶體 (產率 59%)。

25-Benzyloxy-26,27,28-trihydroxycalix[4]arene (31)

取2.00 克(4.72 mmol)的 calix[4]arene(6)與0.40 克(7.41 mmol)的 NaOCH₃ 並加入 2.0 毫升(2.86 克, 16.73 mmol)的 benzyl bromide,於 100 毫升的 acetonitrile 中迴流反應2小時候,利用減壓濃縮除去溶劑,再加入 n-hexane 強迫沉澱,可產生白色固體沈澱,過濾收集此固體,將此固體加入 chloroform 使其溶解後,再加入甲醇做再結晶,得到 1.31 克的白色晶體 (產率 54%)註:1 克 NaOCH₃的固體需先加入 3ml 水,待反應完後再加入 1ml 水加以稀釋。

25-Ethoxy-27-benzoyloxy-26,28-dihydroxycalix[4]arene (32)

取0.50克(1.11 mmol)的單乙基醚化之calix[4]arene(27)與10毫升的 pyridine,再緩慢滴入0.31克(2.20 mmol) PhCOCI 溶液並在冰浴下攪 拌,當溶液混合,顏色由無色變為乳白色,持續在冰浴下攪拌反應25 分鐘。利用減壓濃縮除去溶劑,並加入30毫升chloroform使其溶解後, 再利用分液漏斗以1N的稀鹽酸洗滌三次及飽和碳酸氫鈉水溶液洗滌 三次後,再以去離子水洗滌三次,再經由濾紙過濾後,即可直接以 chloroform與 methanol 做再結晶,可得到0.40克的白色粉狀晶體 (產 率65%)。

25-Benzyloxy-27-benzoyloxy-26,28-dihydroxycalix[4]arene (33)

取0.50克(0.97 mmol)的單苯甲基醚化之calix[4]arene(**31**),溶於10 毫升的 pyridine中,緩慢滴入0.22克(1.28mmol) PhCOCl溶液並在冰浴 下攪拌,當溶液混合,顏色由無色變為乳白色,持續在冰浴下攪拌反 應25分鐘。經減壓濃縮後,並加入30毫升的chloroform將產物溶出, 再利用分液漏斗先以1N的稀鹽酸洗滌三次後,再加入飽和碳酸氫鈉 水溶液洗滌三次,再以去離子水洗滌三次,經由濾紙過濾後,即可直 接以chloroform與 methanol 做再結晶,可得0.37克的白色粉狀晶體 (產率60%)。

25-Ethoxy-27-(p-methoxybenzoyl)oxy-26,28-dihydroxycalix[4]arene(3 4)

取0.50克(1.11 mmol)的單乙基醚化之calix[4]arene(25),溶於10毫 升的pyridine中,再緩慢滴入0.25毫升(1.86mmol)p-anisoyl chloride 溶 液並在冰浴下攪拌,其溶液顏色由無色變為透明黃色,持續在冰浴下 攪拌反應25分鐘。經減壓濃縮後,並加入40毫升的chloroform將產物 溶出,再利用分液漏斗以1N的稀鹽酸洗滌三次及飽和碳酸氫鈉水溶 液洗滌三次後,再以去離子水洗滌三次,經由濾紙過濾後,即可直接 以chloroform與 methanol 做再結晶,可得到0.30克的白色粉狀晶體 (產率46%)。

25-Benzyloxy-27-(*p*-methoxybenzoyl)oxy-26,28-dihydroxycalix[4]are ne(35)

取0.50克(0.97 mmol)的單苯甲基醚化之calix[4]arene(**29**),溶於10 毫升的Pyridine中,緩慢加入0.25毫升(1.86mmol)*p*-anisoyl chloride 溶 液並在冰浴下攪拌,當溶液混合,顏色由無色變為透明黃色,持續在 冰浴下攪拌反應25分鐘。利用減壓濃縮除去溶劑,並加入20毫升的 chloroform使其溶解後,再利用分液漏斗以1N的稀鹽酸洗滌三次及飽 和碳酸氫鈉水溶液洗滌三次後,再以去離子水洗滌三次,經由濾紙過 濾後,即可直接以chloroform 與 methanol 做再結晶,可得到0.34克 的白色粉狀晶體(產率55%);¹H-NMR(CDCl₃) δ 8.28-8.30 (d, 2H, Ar'<u>H</u>), 7.45-7.69 (m, 4H, OCH₂Ar'<u>H</u>), 6.70-7.07 (m, 15H, Ar<u>H</u> and m, 2H, ArO<u>H</u>), 5.11 (s, 2H, OC<u>H</u>₂Ar), 4.25-4.28(d, 2H, ArC<u>H</u>₂Ar), 4.03-4.06 (d, 2H, ArC<u>H</u>₂Ar), 3.92(s, 3H, ArOC<u>H</u>₃) 3.46-3.49 (d, 2H, ArC<u>H</u>₂Ar), 3.37-3.40(d, 2H, ArC<u>H</u>₂Ar)。

25-Ethoxy-26-benzoyloxy-27,28-dihydroxycalix[4]arene (36)

取 0.30 克(0.53 mmol)的 1-乙基醚化-3-苯甲酸酯化之 calix[4]arenes(**30**)和 0.15 克(1.06 mmol)的 K₂CO₃,於 50 毫升的 acetonitrile 中迴流反應 24 小時。經減壓濃縮後,並加入 20 毫升的 chloroform 將產物溶出,再利用分液漏斗以去離子水洗滌及 1N 的稀 鹽酸洗滌最後再用去離子水洗滌,經由濾紙過濾後,再以 chloroform 與 methanol 做再結晶,會先以化合物 **32** 和副產物結晶出來,其再進 行第二次再結晶後,可得到 0.19 克的白色晶體(產率 38%)。

25-Ethoxy-26-(*p*-methoxybenzoyl)oxy-27,28-dihydroxycalix[4]arene (37)

取 0.30 克(0.51 mmol)的 1-乙基醚化-3-甲氧基苯甲酸酯化之 calix[4]arenes(35)和 0.14 克(1.02 mmol)的 K₂CO₃,置於 50 毫升的 acetonitrile 中迴流反應 72 小時。利用減壓濃縮後,並加入 20 毫升的 chloroform 將產物溶出,再利用分液漏斗以去離子水洗滌及 1N 的稀 鹽酸洗滌最後再用去離子水洗滌,經由濾紙過濾後,再以 chloroform

與 methanol 做再結晶,會先以化合物 34 和副產物結晶出來,其再進 行第二次再結晶後,可得到 0.18 克的米白色晶體(產率 36%)。

25-Benzyloxy-26-benzoyloxy-26,28-dihydroxycalix[4]arene(38)

取 0.6 克(0.95 mmol) 的 1-苯甲基醚化-3-苯甲酸酯化之 calix[4]arenes(33), 0.3 克(3.03 mmol)的 K₂CO₃, 置於 50 毫升的 acetonitrile 中迴流 16 小時。經減壓濃縮後,並加入 20 毫升的 chloroform 將產物溶出,再利用分液漏斗以去離子水洗滌及 1N 的稀 鹽酸洗滌最後再用去離子水洗滌,經由濾紙過濾後,再以 chloroform 與 methanol 做再結晶,會先以化合物 33 和副產物結晶出來,其再進 行第二次再結晶。

25-Benzyloxy-26-(*p*-methoxybenzoyl)oxy-26,28-dihydroxycalix [4]arene(39)

取 0.6 克(0.95 mmol)的 1-苯甲基醚化-3-甲氧基苯甲酸酯化之 calix[4]arenes(35),0.3 克(3.03 mmol)的 K₂CO₃,置於 50 毫升的 Acetonitrile 中迴流 24 小時。經減壓濃縮後,並加入 20 毫升的 Chloroform 將產物溶出,再利用分液漏斗以去離子水洗滌及 1N 的稀 鹽酸洗滌最後再用去離子水洗滌,經由濾紙過濾後,再以 Chloroform 與 Methanol 做再結晶,會先以化合物 35 和副產物結晶出來,其再進 行第二次再結晶。

參考文獻

- 1. Baeyer, A. Ber. Dtsch. Chem. Ges. 1872, 5, 280.
- 2. Baekeland, L. H. Ind. Eng. Chem. 1913, 5, 506.
- Zinke, A.; Kretz, R.; Leggewie, E.; Hossinger, K. Monatsh. Chem. 1952, 83, 1213.
- 4. Cornforth, J. W.; Hart, P. D.; Nicholls, G. A.; Rees, R. J. W.; Stock, J. A. *Br J Pharmacol Chemother*. **1955**, *10*, 73.
- Kammerer, H.; Happel, G.; Caesar, F. *Makromol. Chem.*1972, 162, 179.
- 6. Munch, J. H. Makromol. Chem. 1977, 178, 69.
- 7. Gutsche, C. D.; Muthukrishnan, R. J. Org. Chem. 1978, 43, 4905.
- 8. Andreetti, G. D.; Ungaro, R.; Pochini, A. J. Chem. Soc. Chem. Commun. 1979, 1005.
- Shinkai, S.; Mori, S.; Tsubaki, T.; Sone, T.; Manabe, O. *Tetrahedron Lett.*1984, 25, 5315.
- Helgeson, R. C.; Mazaleyrat, J. P.; Cram, D. J. J. Am. Chem. Soc. 1981, 103, 3929. (b) Moran, J. R.; Karbach, S.; Cram, D. J. J. Am. Chem. Soc. 1982, 104, 5826. (c) Cram, D. J. Science. 1983, 219, 1177. (d) Shinkai, S. J. Incl. Phenom. 1989, 7, 193.
- Gutsche, C. D.; Dhawan, B.; Levine, J. A.; No, K. H.; Bauer, L. J. *Tetrahedron.* **1983**, *39*, 409.
- Bocchi, V.; Foina, D.; Pochini, A.; Ungaro, R. *Tetrahedron*. **1982**, *38*, 373.
- 13. Cram, D. J.; Cram, J. M. Science. 1974, 183, 803.
- 14. Doldman, D.; Bohmer, V. J. Am. Chem. Soc. 1988, 110, 6811.

- 15. Harrowfield, J. M. J. Chem. Soc., Chem. Commun. 1991, 1159.
- 16. Ikeda, A.; Shinkai, S. J. Chem. Soc., Chem. Commun. 1994, 2375.
- 17. Ungaro, R.; Casnati, A.; Ugozzol, F.; Pochini, A.; Dozol, J.-F.; Hill,C.; Rouquette, H. *Angew Chem Int Ed Engl.* 1994, *33*,1506.
- Gardiner, M. G.; Koutsantonis, G. A.; Lawrence, S. M.; Nichols, P. J.; Raston, C. L. *Chem. Commun.* **1996**, 2035.
- 19. Hascall, T.; Pang, K.; Parkin, G. Tetrahedron. 2007, 63, 10826.
- Izatt, R. M.; Lamb, J. D.; Hawkins, R. T.; Brown, P. R.; Izatt, S. R.; Christensen, J. J. J. Am. Chem. Soc. 1983, 105, 1782.
- Zhong, Z.-L.; Chen, Y.-Y.; Lu, X.-R. *Tetrahedron Lett.*1995, *36*, 6735.
- 22. (a) Shinkai, S.; Koreishi, H.; Ueda, K.; Manabe, O. J. Chem. Soc., Chem. Commun. 1986, 233. (b) Shinkai, S.; Koreishi, H.; Ueda, K.; Arimura, T.; Manabe, O. J. Am. Chem. Soc. 1987, 109, 6371. (c) Shinkai, S.; Kawaguchi, H.; Manabe, O. J. Polym. Sci. Polym. Lett. 1988, 26, 391. (d) Shinkai, S.; Shiramama, Y.; Satoh, H.; Manabe, O. J. Chem. Soc. Perkin Trans. 21989, 1167.
- Aeungmaitrepirom, W.; Hagège, A.; Asfari, Z.; Bennouna, L.;
 Vicens, J.; Leroy, M. *Tetrahedron Lett.* **1999**, *40*, 6389.
- 24. Savithri, A.; Thulasi, S.; Varma, R. L. J. Org. Chem. 2014, 79, 1683.
- 25. Zhang, A.; Hu, Q.; Chai, Z. Ind. Eng. Chem. Res. 2010, 49, 2047.
- Thiampanya, P.; Muangsin, N.; Pulpoka, B. Org. Lett. 2012, 14, 4050.
- 27. (a) Zinke, A.; Ziegler, E. *Ber. Dtsch. Chem. Ges.*1941, 74, 1729. (b)
 Zinke, A.; Ziegler, E. *Ber. Dtsch. Chem. Ges.*1944, 77B, 264. (c)
 Zinke, A.; Zigeuner, G.; Hössinger, K.; Hoffman, G. *Monatsh.*

*Chem.***1948**, *79*, 438. (d) Zinke, A.; Ott, R.; Garrana, F. H. *Monatsh. Chem.***1958**, *89*, 135. (e) Zinke, A. *J. Appl. Chem.***1951**, *1*, 135.

- 28. Patrick, T. B.; Egan, P.A. J. Org. Chem. 1977, 42, 382.
- 29. Gutsche, C. D.; Dhawan, B.; No, K. H.; Muthukrishnan, R. J. Am. *Chem. Soc.* **1981**, *103*, 3782.
- 30. Gutsche, C. D.; Iqbal, M. Org. Synth. 1989, 68, 234.
- Ninagawa, A.; Matsuda, H. Makromol. Chem. Rapid Commun. 1982, 3, 65.
- Nakamoto, Y.; Ishida, S. *Makromol. Chem. Rapid Commun.* 1982, *3*, 705.
- 33. (a) Hayes, B. T.; Hunter, R. F. *Chem. Ind.* 1956, 193. (b) Hayes, B.
 T.; Hunter, R. F. *J. Appl. Chem.* 1958, *8*, 743.
- 34. (a) Happel, G.; Mathiasch, B.; Kammerer, H. Makromol. Chem. 1975, 176, 3317. (b) Kammerer, H.; Happel, G. Makromol. Chem. 1978, 179, 1199. (c) Kammerer, H. Monatsh. Chem. 1981, 112, 759.
- Bohmer, V.; Chhim, P.; Kammerer, H. *Makromol. Chem.* 1979, 180, 2503.
- 36. (a) Hakimelahi, G. H.; Moshfegh, A. A. *Helv. Chim. Acta*, 1981, 64, 599. (b) Moshfegh, A. A.; Mazandarani, B.; Nahid, A.; Hakimelahi, G. H. *Helv. Chim. Acta*. 1982, 65, 1229. (c) Moshfegh, A. A.; Baladi, E.; Radnia, L.; Afsanch, S. L.; Hosseini, A. S.; Tofigh, S.; Hakimelahi, G. H. *Helv. Chim. Acta*.1982, 65, 1264.
- 37. No, K. H.; Gutsche, C. D. J. Org. Chem. 1982, 47, 2713.
- 38. Gutsche, C. D.; Alam, I. Tetrahedron. 1988, 44, 4689.
- 39. Gutsche, C. D.; Levine, J. A. J. Am. Chem. Soc. 1982, 104, 2652.
- 40. Bohmer, V.; Rathay, D.; Kammerer, H. Org. Prep. Proced. Int. 1978,

10, 113.

- 41. (a) Shinkai, S.; Tsubaki, T.; Sone, T.; Manabe, O. *Tetrahedron Lett.*1985, *26*, 3343. (b) Shinkai, S.; Araki, K.; Tsubaki, T.; Arimur, T.; Manabe, O. *J. Chem. Soc., Perkin Trans. 1*.1987, 2297. (c) Arimur, T.; Shinkai, S.; Matsuda, T.; Hirata, Y.; Satoh, H.; Manabe, O. *Bull. Chem. Soc. Jpn.* 1988, *61*, 3733. (d) Shinkai, S.; Arimura, T.; Araki, K.; Kawabata, H.; Satoh, H.; Tsubaki, T.; Manabe, O. *J. Chem. Soc. Perkin Trans. 1*.1989, 2039. (e) Arimura, T.; Nagasaki, T.; Shinkai, S.; Matsuda, T. *J. Org. Chem.* 1989, *54*, 3766.
- 42. Nomura, E.; Taniguchi, H.; Tamura, S. Chem. Lett. 1989, 1125.
- 43. Rosik, L. O.; Ph. D. Thesis, Washington University, St. Louis, 1986, 29.
- 44. Gutsche, C. D.; Reddy, P. A. J. Org. Chem. 1993, 58, 3245.
- 45. Groenen, L.C.; Ruëla, B. H.M.; Casnati, A.; Timmerman, P.;
 Verboom, W.; Harkemab, S.; Pochinin, A.; Ungaro, R.; Reinhoudt,
 D.N. *Tetrahedron Lett.* 1991, *32*, 2675.

