中國文化大學 99 學年度轉學招生考試

日期節次:7月27日第4節15:20-16:40 系組:應用數學系三年級

科目:高等微積分 (141-75)

Transfer Test; Advanced Calculus; Show all works to get full credits!

1. (15%) **State** the following theorems

(5)_a(a) Bolzano-Weierstrass theorem

(b) Heine-Borel theorem

 $5^{1/2}$. (15%) **Prove or disprove** that $f(x) = x^2$ is uniformly continuous on the real line \mathcal{R} .

3. (15%)

f''(a) Let a < b and $f: [a, b] \to R$ be bounded. Given the definition that "f is Riemann integrable on [a,b]".

 $(0)^{6}$ (b) If f is Rieman integrable on [a,b], then **prove**

$$F(x) = \int_{a}^{x} f(t) dt$$

exists and is continuous on [a,b].

4. (15%) Show the following function converges or has no limit as $(x,y) \rightarrow$ (0,0).

$$f(x,y) = \frac{3x^2y}{x^2 + y^2}$$
 (b) $g(x,y) = \frac{2xy}{x^2 + y^2}$

5. (15%) Let \mathcal{E} be a nonempty subset of the real line R and suppose that $f_n \to f$ uniformly on \mathcal{E} . If each f_n is continuous at some $x_0 \in \mathcal{E}$, then **prove** that f is continuous at $x_0 \in \mathcal{E}$.

6. (10%) Let $H \subseteq \mathbb{R}^n$ be a nonempty connected set. If f is continuous on H, then **prove** f(H) is also connected.

 $f: \mathbb{R}^n \to \mathbb{R}^m$ is a function and $a \in \mathbb{R}^n$. Give the definition of "f \checkmark is differentiable at a".

(b) Is this function

$$f(x,y) = \begin{cases} \frac{y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

differentiable at (0,0)?