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Abstract 

The objective of this project is to conquer 

two major drawbacks shared by many existing 

backstepping-based control schemes, first, the 

kinematic controller contains a high-order 

polynomial function of the desired velocity 

which may result in extremely high control 

torques in fast motion applications; second, 

the dynamic controllers are restricted for cases 

with the input matrix being exactly known a 

priori. For conquering the first drawback, a 

modified saturation function, replacing the 

high-order polynomial, is included to keep the 

control from growing unbounded while 

preserve the asymptotic tracking stability 

simultaneously. Next, based on our earlier 

smooth switching control designs, a hybrid 

control scheme for conquering the second 

restriction is constructed. Not only the 

theoretical analysis ensuring the validity of the 

proposed design is conducted but also 

simulation results demonstrating the 

usefulness are also provided 

    

     

Keywords: Hybrid-based controller, 

switching mechanism, modified saturation 

function. 
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     Tracking control of mobile robot 

systems under nonholonomic constraints, due 

to its great potential in a wide variety of 

applications, has received a lot of attentions 

recently. Numerous schemes, falling into the 

span of the discontinuous control, the hybrid 

control, and the backstepping designs, have 

been proposed to attain the control objectives 

(see [1] for a review).  

A backstepping based controller was first 

presented in [4] to achieve the semiglobal 

asymptotic tracking stability for a specific 

wheeled mobile robot with two degrees     

of freedom. The smooth time-varying 

dynamic stabilizer in [5] ensures the global 

asymptotic stability for multi-input chained 

systems. To widen its applicability, the 

dynamic design level, which takes the 

dynamics into account and aims to develop 

torque control algorithms, should be initiated. 

  Regarding this, an adaptive backstepping 

approach was developed for nonholonomic 

dynamic systems with inertia parametric 

uncertainty in [6]. The scheme in [7] ensures 

the exponential tracking stability on a mild PE 

condition for a specific type of mobile   

robots. However, the inclusion of high-degree 

polynomials of the affine functions in most of 

these controllers may lead to the possible 

blowup of the actuators for high-order 

kinematic systems   in high-speed motions.  

 We intend to conquer such drawbacks in this   

paper. The control structure here is similar to 

the one in [5], however, instead of the 

high-degree polynomial, an exponentially 

modulated linear stabilizing function is 

included in our kinematic controller.  The 

modulation function acts to provide a faster 

convergence to zero than the denominator of 

the virtual controller and thus prevents the 

occurrence of singularity, while the linear 

stabilizing component avoids the blowup of 

the actuators on the other hand. Next in the 

dynamic stage, an adaptive control algorithm 

is developed to achieve the global asymptotic 

tracking stability of the overall closed-loop 

system in the presence of the inertia 

parametric uncertainty.  

   

 

  

Let nRq  denote the generalized coordinate 

vector of a mobile robot. The corresponding 

velocities, when subjected to nonholonomic 

constraints, satisfy 

0)( qqJ                  (1) 

where nmnRqJ  )1()(  is the full-rank 

constraint matrix. Next, the robot dynamics is 

described by [7] 

 TJqBqGqqqCqqM  )()(),()(    (2) 

where 
nnRqM )( is the symmetric, positive 

definite inertia matrix; rR is the available 

motor torque vector and )(qB is an rn

full-rank matrix; 1 mnR represents the 

constraint force; qqqC ),(  is the centripetal 

and Coriolis torque vector while )(qG is the 

gravitational torque. The following properties 

known to hold for a general robot are 

summarized here for the ease of reference. 

P1): The left-hand side of (2) is linear in the 

physical parameters (masses, moment of 

inertia, etc.) and therefore can be written in a 

compact form of 

),,,()(),()( vvqqHqGvqqCvqM     (3) 
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where pR denotes the lumped parameter 

vector while pnRH  is the regression 

matrix depending on vqq ,,  and v . 

P2): The selection of the matrix ),( qqC  is not 

unique, and in particular, it can always be 

selected to render the matrix CM 2 skew 

symmetric. 

Under the condition that the parameter vector 

  being unknown, the control objective is to 

determine a control law for  such that 

),(),( dd qqqq    as t . 

The first step is to obtain the dynamics on the 

reduced constraint manifold fulfilling (1), 

which is )1( m dimensional and free from 

constraint forces. The assumption of )(qJ

being of full rank implies the existence of a 

smooth distribution, denoted J , which totally 

annihilates the row vectors of )(qJ  for all
nRq . More formally, there exists a set of 

linearly independent vector field 1)(  mRqv

such that 

)()( qvqRq               (4) 

  Taking time derivatives of (5) results in 

vRvRq                 (5) 

By substituting (5) and (6) into (2) and then 

multiplying both sides by SRT , it yields 

)()(),( 1111 qBqGvqqCvM        (6) 

where RqMRM T )(1  ,

),(),()()(),(1 qRqqCRqRqMRqqC TT  

),(1 qGRG T  and )(1 qBRB T . 

Equations (4) and (6) constitute a set of

)1( mn algebraic-differential equations 

describing the dynamics on the constraint 

manifold. It is quite common to first convert 

(4) into certain canonical forms to facilitate 

the control designs [8]. In the sequel, we 

assume there exists a diffeomorphic 

coordinate transformation ),(qy  vqu )(   

with )1()1()(  mmRq , under which the 

kinematic subsystem (4) can be transformed 

into  the  m-chain single-generator chained 

canonical form 

11,1,

,

,

,

,10,

00









iiin

ijij

njmiuy

yuy

uy

i






     (7) 

where in is the number of states of the i 'th 

chain with nn
m

i i  1
1

nT

mnmn Ryyyyyy
m

 ],,,,,,,[ ,,11,1,10 1
  

is the transformed state vector, and 

1

0 ],,[  mT

m Ruuu   is the corresponding 

control input vector. 

 Within such a framework, the dynamic 

model can be rewritten as 

)()(),()( yByGuyyCuy         (8) 

where
)(

1

1 1)()()()(
yq

T qqMqyM 




 ,

)(

1

1 1)(),()(),(
yq

T qqqCqyyC 




  ,

)(1 1)()()(
yq

T qGqyG 




 ,

)(1 1)()()(
yq

T qBqyB 




 . It is easy to prove 

that )(yM remains as a symmetric positive 

definite matrix and 

P3)  ),,,()(),()(  yyyGyyCyM   

where  is some certain known regression 

matrix depending on ,,qq  and . 

P4) The matrix CM 2 is skew symmetric. 

On the other hand, the desired trajectory dq

should certainly comply with the constraints 

in a way of 
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ddd vqRq )(          (9) 

which, via the similar transformation 

)(0, dd qy  and ddd vqu )( can also be 

converted into the chained form 

  

11,1

,

,,

,10,,

0,0









iidin

ijdij

d

njmiu

u

u

i












   (10) 

The trajectory tracking task has been 

converted into a model following problem, i.e, 

under the condition of the inertia parameters 

 being unknown, the goal is to seek an 

adaptive controller such that y as t . 

 

  

 

In this section, a backstepping based control 

design will be formulated for attaining the 

objectives.  

By subtracting (7) from (10), the dynamics of 

the kinematic tracking error vector  ye  

can be obtained as 

11,1,

)(

,,

,10,0,10,,

0,00









iidiin

ijdijdij

d

njmiuue

yuueue

uue

i






   (11) 

The following set of error states are defined 

accordingly 

11,

1,1,

1,1

,1,,

00











mkuu

njmiez

ez

kbkk

iijijij



    (12) 

where
1

,11,11,0 ],,,,[ 

  nT

mnn R
mi

     

and 
1

,0, ],,[  mT

mbbb Ruuu  are the virtual 

controllers at disposal. By a direct 

differentiation and taking (11) into account, it 

yields 

11,

)(          

)(

,1,,1,

,1i1,j0,0,1

,,10,,

0,0,10















iinidibiin

ijdb

ijijdij

db

njuuz

yuu

zuz

uuz

ii
















(13) 

  Next, define 

 ])/exp(1[)( 2

0,0,0,

n

sddd wuuur     (14) 

 where 0sw is a design constant and n  is 

nonnegative satisfying

.1,2 max minn i   

  The proposed virtual and actual controllers 

can now be specified as follows 

])(ˆ),,,([

         

12,                               

)(),(

)(),(

0

1

)1(

0,

2

0k
)(

0,

,1
1

1k

,1

,

,1

0,

,,10,,,

0,0,

1

1k

,1

,

,1

,,0,,1,

)1(

0,,

,10,,10,,1

,0













































































ktuuyyB

u
u

e
e

u

zkzuuu

uu

nje
e

hzurkzeu

zurkeu

bb

k

d

n

k

d

in
n

ik

ik

in

d

inzindidib

db

j

iik

ik

ij

ijijdzijij

j

dij

idzidi

i

i

i

i

i

ii



(15) 

where 
ijh ,
and T

m ],,[ 11      are 

defined by 

1,,2,

][

1

1,

1

1

1 2

,1

1

1 ,

,1

,,1,01

2

0

)1(

0,)(

0,

,1

0,

,



















 

















   



mkz

y
e

zyzz

u
uu

h

knk

m

i

n

j

n

j

ik

j

k ik

ij

ijijij

j

k

k

dk

d

ij

d

ij

k

i i







(16) 
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while R is a dynamic state described by 

 10   k             (17) 

The corresponding update algorithm for ̂  is 

given by 

 ),,,(ˆ
bb

T

a uuyy 


       (18) 

 where 0a is the update gain. 

The function )( 0,dur in (14), which plays a 

key role in the proposed design, has two 

desired properties 

P5) Ruuur ddd  0,0,0, ,0)(  

P6) 
.0,1

,0)/)((lim 0,0,0,00,

njnk

uuru j

dd

jk

dud






 

By substituting (16) into (14) and (9), the 

resulting closed-loop error dynamics becomes 

1nj2,)yC(y,-               

~
),,()(

),(          

)(

         

))((        

)(

)()(

i

1

1

1

,1

,

,1

,1

1,,10,1,

1

1

,1

,

,1

,11

ij,0,0,,10,,10,,

,21i1,0,0,,20,1

10














































































bb

n

k

ik

ik

in

ij

inzindiin

j

k

ik

ik

ij

ij

dbzijdijdij

idbzid

uuyykyM

y
e

y

zkzuz

y
e

y

zurukzuzuz

yzurukzuz

z

i

i

iii

 

(19) 

The main results are restricted for reference 

trajectories satisfying the following criterion 

A1) dy is bounded and smooth, and

.0inflim 0,  dt u  

We can now state that 

Theorem 1: Consider the error dynamics in 

(13), with the control in (15) and the update 

algorithm in (18). Sustained A1), the 

following goals can be achieved 

 all the signals in the closed-loop system 

remain bounded; 

  the tracking error 0)( te as .t   

 

 

 

  To demonstrate the validity of the proposed 

design, two case studies of a unicycle-like 

wheeled mobile robot and a fire truck system 

are conducted in this section. 

The constrained dynamics of the unicycle-like 

wheeled mobile robot in Fig. 1 can be 

described by [4] 

0]0sin[cos)(

3

2

1

33 



















q

q

q

qqqqJ







     (20)  
































































2

1

33

33

3

2

1

0

coscos

sinsin
1

00

00

00





LL

qq

qq

W
q

q

q

I

m

m







(21)

 

 where 21 ,qq are the coordinates of the 

reference point P in the inertial frame, 3q is the 

orientation of the reference frame with respect 

to the inertial frame, m is the mass of the robot, 

and 0I  is its inertia moment about the vertical 

axis at point P ,W is the radius of the wheels 

and L2 is the length of the axis of the front 

wheels, and 21 , are the motor torques. The 

matrix )(qR that spans the J subspace is 

identified as 
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

















10

0cos

0sin

)( 3

3

q

q

qR              (22) 

Clearly, q must lie in J , which leads to 



























2

1

3

3

10

0cos

0sin

)(
v

v
q

q

vqRq         (23) 

Following the constructive procedures 

outlined in [8], the coordinates for a chained 

form transformation can be found as 





















































3

2

1

33

33

1,2

1,1

0

0cossin

0sincos

100

q

q

q

qq

qq

y

y

y

     (24) 





























2

1

32311

0

)sincos(1

10

v

v

qqqqu

u
(25) 

Within such a frame, the kinematic model in 

(24) can be converted into the following 

chained form 

 

11,2

01,21,1

,00

,

uy

uyy

uy













             (26) 

For this application, the reduced dynamics on 

the constraint space in (8) can now be written 

explicitly as 

  )(),()( yBuyyCuy        (27) 

where ],,;,[)( 1,11,10

2

1,1 mmymyImyyM   

],0,;0,[),( 1,11,11,1 ymymyyyC   and 

].1,1;,[)( 1,11,1

1 LyLyWyB  
 

 Define TIm ],[ 0 . By inspecting (27), the 

corresponding regression matrix can be easily 

obtained as 

 













00,1,10,1,10,

0,0,1,10,1,11,10,

2

1,1

bbb

bbbb

uyuyu

uuyuyyuy





(28) 

 The desired trajectory is a circle given by

T

d ttAtAq ]sincos[  , where A and 

are positive constants at disposal. By a direct 

calculation, it is not hard to get that 

,00,   
du  clearly, A1) fulfills in this 

application. Moreover, the constraint equation 

ddd vqRq )( sustains with Avd 1  and

2dv . By substituting dq and dv into (25), 

it yields 

 

02,1

1,1

0













A

t

                 (29) 

 The adopted numerical values in this 

simulation are 

,0.1,0.1,2.0,0.4,0.2 0  ALWIm  

and .0.1 The initial positions and velocities 

of the wheeled robot are chosen as
Tq ]4.0,6.0,8.0[)0(  . The control gains are 

given by 2.0,02.0,0.2,0.5 0  asz kk  . 

Due to the lack of PE of the regressor )(t in 

the limiting case of t , the parameter 

errors do not converge to zero eventually, as 

shown in Fig. 2 [9]. Nevertheless, the tracking 

errors still go to zero after about 50 seconds, 

as depicted in Fig. 3. 

 

 

 

 We have constructed an adaptive controller 
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for the uncertain nonholonomic mobile robot 

system consisting of the kinematics (1), the 

dynamics (2), the control algorithm (17), and 

the parameter update algorithm (21). By 

adopting an exponentially modulated linear 

control function instead of the conventional 

polynomial ones, it preserves the global 

asymptotic tracking stability without resorting 

to high control forces at the same time.  

 

 

 

1 Kolmanovsky, I., and McClamroch, 

N.H.: ‘Developments in nonholonomic 

control problems’, IEEE Control Syst. 

Mag., 1995, 15, (6), pp. 20-36.           

2 Jiang, Z.P., and Nijmeijer, H.: ‘A 

recursive technique for tracking 

control of nonholonomic systems in 

chained form,’ IEEE Trans. Automat. 

Contr., 1999, 44, (2), pp. 265-279. 

3 Krstic, M.,  Kanellakopoulos, I., and  

Kokotovic, P.V.: ‘Nonlnear and 

adaptive control designs’ (Wiley, New 

York, 1995). 

4  Jiang, Z.P., and Nijmeijer, H.: 'Tracking 

control of mobile robots: a case study 

in backstepping', Automatica, 1997, 33, 

(7), pp. 1393-1399. 

5  Jiang, Z.P.: 'Iterative design of 

time-varying stabilizers for multi-input 

systems in chained form', Syst. Control 

Lett., 1996, 28, (5), pp. 255-262. 

6 Wang, Z.P., Ge, S.S., and  Lee, T.H.: 

'Robust adaptive neural network control 

of uncertain nonholonomic systems 

with strong nonlinear drifts', IEEE 

Trans. Syst. Man. and Cybern., 2004, 34, 

(5), pp. 2048-2059. 

7 Dixon, W.E., Dawson, D.M., Zhang, F. 

and Zergeroglu, E.: 'Global 

exponential tracking control of a 

mobile robot system via a PE 

condition', IEEE Syst. Man, Cybern., 

2000, 30, (1), pp. 129-142. 

8 Samson, C.: 'Control of chaind systems 

application to path following and 

time-varying point-stabilization of 

mobile robots', IEEE Trans. Automat. 

Contr., 1995, 40, (1), pp. 64-77. 

9 Bloch, A.M., Reyhanoglu, M., and 

McClamroch, N.H.: 'Control and 

stabilization of nonholonomic dynamic 

systems', IEEE Trans. Automat. Contr., 

1992, 37, (11), pp. 1746-1757. 

10 Walsh, G.C., and Bushnell, L.G.: 

'Stabilization of multiple input chained 

form control systems', Syst. Contr. 

Lett., 1995, 25, (3), pp. 227-234. 

11 Huang, J.T.: 'Parameter convergence of 

adaptive input-output linearizable 

systems with application to Chua's 

circuits', IET Proc. Control Theory 

Appl., 2007, 1, (3), pp. 572-577. 

12 Huang, J.T.: ' Adaptive tracking control 



 9 

of high-order non-holonomic mobile 

robot systems ', IET Proc. Control 

Theory Appl., 2009, 3, (6), pp. 

681-690. 

      

 

Fig. 1 Schematic diagram of unicycle-like 

mobile robot 

 

Fig. 2 Estimated parameter errors 

 

Fig. 3 Tracking error trajectories  

 

 


