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Hybrid-Based Control Designs for Mobile Robots
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the dynamic controllers are restricted for cases
with the input matrix being exactly known a
priori. For conquering the first drawback, a
modified saturation function, replacing the
high-order polynomial, is included to keep the
control from growing unbounded while
preserve the asymptotic tracking stability
simultaneously. Next, based on our earlier
smooth switching control designs, a hybrid
control scheme for conquering the second
restriction is constructed. Not only the
theoretical analysis ensuring the validity of the
proposed design is conducted but also
simulation  results  demonstrating  the
usefulness are also provided

FHERM - Keywords: Hybrid-based controller,
switching mechanism, modified saturation
Blsgss ARSI S function.
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Abstract

The objective of this project is to conquer
two major drawbacks shared by many existing
backstepping-based control schemes, first, the
kinematic controller contains a high-order
polynomial function of the desired velocity
which may result in extremely high control
torques in fast motion applications; second,
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Tracking control of mobile robot
systems under nonholonomic constraints, due
to its great potential in a wide variety of
applications, has received a lot of attentions
recently. Numerous schemes, falling into the
span of the discontinuous control, the hybrid
control, and the backstepping designs, have
been proposed to attain the control objectives
(see [1] for a review).

A Dbackstepping based controller was first
presented in [4] to achieve the semiglobal
asymptotic tracking stability for a specific
wheeled mobile robot with two degrees
of freedom. The smooth time-varying
dynamic stabilizer in [5] ensures the global
asymptotic stability for multi-input chained
systems. To widen its applicability, the
dynamic design level, which takes the
dynamics into account and aims to develop
torque control algorithms, should be initiated.
Regarding this, an adaptive backstepping
approach was developed for nonholonomic
dynamic systems with inertia parametric
uncertainty in [6]. The scheme in [7] ensures
the exponential tracking stability on a mild PE
condition for a specific type of mobile
robots. However, the inclusion of high-degree
polynomials of the affine functions in most of
these controllers may lead to the possible
blowup of the actuators for high-order
kinematic systems in high-speed motions.
We intend to conquer such drawbacks in this
paper. The control structure here is similar to
the one in [5], however, instead of the
high-degree polynomial,
modulated linear

an exponentially
stabilizing function is

included in our kinematic controller. The
modulation function acts to provide a faster
convergence to zero than the denominator of
the virtual controller and thus prevents the
occurrence of singularity, while the linear
stabilizing component avoids the blowup of
the actuators on the other hand. Next in the
dynamic stage, an adaptive control algorithm
is developed to achieve the global asymptotic
tracking stability of the overall closed-loop
in the presence of the inertia
parametric uncertainty.

system

= MAEfTd

Let ge R" denote the generalized coordinate
vector of a mobile robot. The corresponding
velocities, when subjected to nonholonomic
constraints, satisfy

J(@q=0 1)
where  J(q) e R®™" js the full-rank
constraint matrix. Next, the robot dynamics is
described by [7]
M(9)4+C(q,9)q+G(q) =B(q)r+I"2 ()
where M (q) e R™is the symmetric, positive
definite inertia matrix; = e R"is the available
motor torque vector and B(qg) is an nxr
full-rank matrix; AeR"™™ represents the
constraint force; C(g,q)q is the centripetal
and Coriolis torque vector while G(q)is the
gravitational torque. The following properties
known to hold for a general robot are
summarized here for the ease of reference.
P1): The left-hand side of (2) is linear in the
physical parameters (masses, moment of
inertia, etc.) and therefore can be written in a
compact form of

MgV +C(a,q)v+G(q) =H(a,q,v,v)8 (3)



where 8 € R” denotes the lumped parameter
vector while H eR™" is the
matrix depending on q,q,vandv.
P2): The selection of the matrix C(q,q) is not

regression

unique, and in particular, it can always be
selected to render the matrix M —2C skew
symmetric.

Under the condition that the parameter vector
S being unknown, the control objective is to
determine a control law for r such that
(0.9) > (q4,44) ast —>oo.

The first step is to obtain the dynamics on the
reduced constraint manifold fulfilling (1),
which is (m+1) dimensional and free from
constraint forces. The assumption of J(q)
being of full rank implies the existence of a

smooth distribution, denoted J -, which totally
annihilates the row vectors of J(q) for all

qe R". More formally, there exists a set of
linearly independent vector field v(g) e R™*
such that

q=R(a)v(a) (4)
Taking time derivatives of (5) results in
¢ = RV+Rv (5)

By substituting (5) and (6) into (2) and then
multiplying both sides by R'S, it yields
M,V +C, (q, 4V +G, (q) = B, (q)r

where M, = R"M(Q)R,

C,(a,9) = R"M(q)R(q) + R"C(q,4)R(q),
G, =R'G(q), and B, =R"B(q).
Equations (4) and (6) constitute a set of
(n+m+1) algebraic-differential equations

(6)

describing the dynamics on the constraint
manifold. It is quite common to first convert
(4) into certain canonical forms to facilitate
the control designs [8]. In the sequel, we
assume there exists a diffeomorphic
coordinate transformation y = ¢(q), u = @(q)v

with  ¢@(q) € R™™D " under which the
Kinematic subsystem (4) can be transformed
into the m-chain single-generator chained
canonical form

yO :u01
yj,i =UoY i
Voi=U, 1<i<ml<j<n -1

(")

where n, is the number of states of thei 'th
m
D>.n+1=n

y:[yO'yl,l’“"ynl,ll'“’yl,m!"'iynm,m]T eR"

chain with

is the transformed state vector, and

u=[u,,--u,]" eR™ is the corresponding

control input vector.
Within such a framework, the dynamic
model can be rewritten as

M(y)u +C(y, Y)u+G(y) = B(y)r (8)

where M (y) = p(a) " M (@@(0)| )
Cy ) =@ CaDe@ 7| oy
G(Y) = p(a) " G,()| ,

B(y) = (a) " By()|_,,, - Itis easy to prove

that M (y)remains as a symmetric positive
definite matrix and

P3) M(y)77+C(y, V) +G(y) = D(Y. Y. 17.77)
where @ is some certain known regression
matrix depending onq,q,7 andz.

P4) The matrix M — 2C is skew symmetric.

On the other hand, the desired trajectory q,
should certainly comply with the constraints
in a way of



¢ = R(04)Vq
similar

(9)

which, via the transformation

Yq0 =¢(q,) and u, =¢(q,)v, can also be

converted into the chained form

So = Ugo
éj,i =Ug oG i (10)
Goi =Ug; 1<i<m 1< j<n -1

The trajectory tracking task has been

converted into a model following problem, i.e,
under the condition of the inertia parameters
S being unknown, the goal is to seek an
adaptive controller such thaty — ¢ ast — .

= SRS

In this section, a backstepping based control
design will be formulated for attaining the
objectives.

By subtracting (7) from (10), the dynamics of
the kinematic tracking error vector e=y—¢
can be obtained as

e'o =Uy — Uy
€1 =Ug o€ +(Ug—Ug o)y, (11)
€,i=U —Uy;,1<i<m1<j<n -1

The following set of error states are defined
accordingly

Z, =€

z,,=¢,;~a,,;,1<i<ml<j<n (12

o =U g —Up 1<k <m+1
Wherea=[0!0,1,"',ani,1,17"" 71m] ERnl

and u, =[u,,,--,U, ] € R™" are the virtual

controllers at disposal. By a direct

differentiation and taking (11) into account, it
yields

Ly = 51 +U,o —Ugo
Z;; =Ugo(Zj; o)+
(&1 + Uy _ud,o)yj+li —
Z,i =8 tUy; —Uy; —a, 4;,1< jsn -1
(13)
Next, define
(Ugo) =Ugo[l—exp(uy o /Ws)m] (14)

wherew, > 0is a design constantand n is
nonnegative satisfying

n>maxn —21<i<m.

The proposed virtual and actual controllers

can now be specified as follows

a,; =0

ayi(Ugg,85) =K, r(Ug0)Zy;

_ i-1) —

aj,i(ud,O(J )’ej,i) ==L, —k,r(ug o)z

K oa;

2

k1 OBy

Upo =Ugo +77
k,z

n-Li = "Nz&ni

’—180(, n 2605‘_1,

-1
+Udoz P ek+l|+z (k) d,0

k=1 Ki

7 =B [D(Y, y,Uy, U, ) ) — ki —A]

Uy =Ugi —UgoZ

(k+1)

(15)

where h,;and A =[A,,---, A are

m+1]

defined by

-2
i 80{11,

:_Z -
Ugo k=0 auc(i())
RIS S oa

A1—20+Z[szlyj+ll Zzllz oe
ki

i=1 j=1 j=2 k=1
A=2, 44, k=2,--m+1

4 ()
Ugo

k+1,i]

(16)

J N -
i 25 )N -1



while7 € Ris a dynamic state described by
1n=—Ken—Ay (17)
The corresponding update algorithm for 3 is
given by
f=-7.0T (V. J.U0)6  (18)
where y, > 0is the update gain.

The function r(u ,) in (14), which plays a

key role in the proposed design, has two
desired properties

P5) r(ugo)ug, =20,Vu,, €R

Iimud‘oao uc;,ko (ajr(ud,o)/aug,o) =0,

Vi<k<m0<j<n,

P6)

By substituting (16) into (14) and (9), the

resulting closed-loop error dynamics becomes
2, =6, +17
2, =UgoZy; — KUy o Uy o) 2y + (5 +1)Ys;
Zj,i = ud,OZj+l,i _ud,OZj—l,i - kzub,or(ud,o)zj,i

= Qi

0
(&AM — 2 ——

a k+l,i)
k=1 k,i

Z.ni,i = é:i+1 - ud,OZni—l,i - kzzni,i - (é:l +77)

(yj+1,i _Z _
M (y)é = —k,& — A+ D(y, ¥,u,U,) S
-C(y, )&, 2<j<n, -1

8Olni—l,i
oe y

k+1,i )’

(19)
The main results are restricted for reference
trajectories satisfying the following criterion
Al) vy, is bounded and smooth, and

lim,_,,, influg o| > 0.

t—oo

We can now state that

Theorem 1: Consider the error dynamics in

(13), with the control in (15) and the update

algorithm in (18). Sustained A1), the

following goals can be achieved

® all the signals in the closed-loop system
remain bounded,

® the tracking errore(t) —» 0ast — .

o~ R

To demonstrate the validity of the proposed
design, two case studies of a unicycle-like
wheeled mobile robot and a fire truck system
are conducted in this section.

The constrained dynamics of the unicycle-like
wheeled mobile robot in Fig. 1 can be
described by [4]

o)
J(9)q =[cosq,sing, 0] 4, |=0  (20)
ds
m 0 0|¢q —-sing, -—sing,
O m O0|¢,|=—] cosq, cosq, {Tl}
T
0 0 I,|d, L -L |-
(21)

where q,,q, are the coordinates of the
reference point P in the inertial frame, q, is the
orientation of the reference frame with respect
to the inertial frame, m is the mass of the robot,
and |, is its inertia moment about the vertical
axis at point P ,W is the radius of the wheels
and 2L is the length of the axis of the front
wheels, and 7,7, are the motor torques. The
matrix R(q) that spans the J - subspace is
identified as



—-sing, O
R(g)=| cosg, O (22)
0 1
Clearly, gmust lieinJ*, which leads to
—-sing, O
G=R(q)v= (23)

cosq, O
V2
0 1
Following the constructive procedures

outlined in [8], the coordinates for a chained
form transformation can be found as

Yo 0 0 1fq
Y11 | =| €OSQ, sing; 0fdq, (24)
Yau —sing, cosqg, O0fq,

i gEE—"
= : (25)
U, 1 —(9,c0sq, +q,sings) | v,

Within such a frame, the kinematic model in
(24) can be converted into the following
chained form

Yo = Uy,
yl,l = Y,.Up, (26)
yz,l =u;

For this application, the reduced dynamics on
the constraint space in (8) can now be written
explicitly as

M(y)u +C(y, y)u=B(y)r 27)
where M (y) = [my12,1 + 1o, my, s My, m],
C(y, y) = [my1,1 Y1,11O; myleO]a and

B(y) =W 71[y1,1 +L, Yii — L;l,l].

Define g =[m,1,]". By inspecting (27), the

corresponding regression matrix can be easily
obtained as

2 . . . .
| YaiUpo T Y11 YiaUpo + YaaUpo  Ubpo
Uy + Y1aUpo + Yislpo 0

o

(28)
The desired trajectory is a circle given by

0y =[Acosat Asinat at]" , where Aand @

are positive constants at disposal. By a direct
calculation, it is not hard to get that

Ugo =¢o = @, Clearly, Al) fulfills in this

application. Moreover, the constraint equation
d, = R(qq)v,sustains with v, = @A and
V4, = @. By substituting g, andv, into (25),

it yields
Gy = ot
G =A (29)
G12 = 0

The adopted numerical values in this
simulation are

m=20,1,=40W =0.2,L=1.0,A=1.0,
and @ =1.0. The initial positions and velocities
of the wheeled robot are chosen as

q(0) =[0.8,0.6,0.4]" . The control gains are
given byk, =5.0,k, =2.0,0, =0.02,y, =0.2.
Due to the lack of PE of the regressor d(t) in
the limiting case oft — oo, the parameter
errors do not converge to zero eventually, as
shown in Fig. 2 [9]. Nevertheless, the tracking
errors still go to zero after about 50 seconds,
as depicted in Fig. 3.

AR )

We have constructed an adaptive controller



for the uncertain nonholonomic mobile robot
system consisting of the kinematics (1), the
dynamics (2), the control algorithm (17), and
the parameter update algorithm (21). By
adopting an exponentially modulated linear
control function instead of the conventional
polynomial ones, it preserves the global
asymptotic tracking stability without resorting
to high control forces at the same time.
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Fig. 1 Schematic diagram of unicycle-like
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Fig. 3 Tracking error trajectories
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Fig. 2 Estimated parameter errors



