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一、中文摘要 
 

個人無線通訊在通訊產業是一快速成長的領域，

由於製造技術進步，導致縮短產品的生命週期及預

期上市時間。顧客期望以較低的價格購買功能較多

的產品。在手機製程中，無線頻率(Radio Frequency; 
RF)功能測試程序相較於其他製造程序需要較多的
操作時間。因此製造商需要有效的方法，在 RF功
能檢測品質不變下，減少 RF測試項目、縮減檢測
時間。變數精準粗略集(Variable Precision Rough 
Sets; VPRS)是資料探勘的重要工具之一，目前已被
廣泛應用於知識獲取。本研究利用 VPRS減少手機
製程中 RF功能測試的項目，實驗結果顯示雖然測
試項目顯著減少，但利用保留下的測試項目所構成

的新測試程序，其檢測準確率非常接近原測試程

序。此外，和決策樹方法比較，VPRS也有較佳的
檢測績效。 

 

關鍵詞：資料探勘，無線頻率功能測試，變數精準

粗略集，決策樹，手機 

 

ABSTRACT 

Personal wireless communication is one of the 

fastest growing fields in the communications in-
dustry. The technology employed by mobile tele-
communications is rapidly growing with shorter 
product life cycles, a shortening of time to market 
expectations, and a higher customer expectation of 
more capability for less cost. In mobile phone 
manufacturing, the radio frequency (RF) functional 
test process needs more operation time than other 
processes. Manufacturers require an effective 
method to reduce the RF test items so that the in-
spection time can decrease, but still the quality of 
the RF functional test must be maintained. The 
Variable Precision Rough Sets (VPRS) model is a 
powerful tool for data mining, as it has been widely 
applied to acquire knowledge. In this study the 
VPRS model is employed to reduce the RF test 
items in mobile phone manufacturing. Implementa-
tion results show that the test items have been sig-
nificantly reduced. By using these remaining test 
items, the inspection accuracy is very close to that 
of the original test procedure. In addition, VPRS 
demonstrates a better performance than that of the 
decision tree approach.  

 
Keywords: data mining, RF 
functional test, VPRS, decision 
tree, mobile phone.  
 

二、緣由與目的 
 

∗Personal wireless communication is one of the 
fastest growing fields in the communications industry. 
The technology employed by mobile telecommunica-
tions is advancing rapidly with shorter product life 
cycles. In recent years, dual band (GSM/DCS) mo-
bile phone users have been steadily increasing. Fur-
thermore, the diffusion of mobile technology is likely 
to persist well into this decade. Therefore, mobile 
phone manufacturers require an effective method to 
reduce the mobile phone manufacturing time in ad-
vance of further market demand. 

The global system mobile (GSM) and digital 
communication system (DCS) are based on different 
techniques, involving communication methods such 
as time division multiplex access and discontinuous 
transmission and power control strategies. The dual 
band mobile phone manufacturing procedure is 
shown in Figure 1. From Figure 1, we know that a 
radio frequency (RF) functional test needs more op-
eration time than other manufacturing processes. The 
RF test aims to inspect if the mobile phone re-

                                                 
 

ceive/transmit signal satisfies the enabled transmis-
sion interval (ETI) protocol on different channels and 
power levels. In order to ensure the quality of com-
munication of mobile phones, the manufacturers usu-
ally add extra inspection items, such as several dif-
ferent frequency channels and power levels, resulting 
in inspection time being increased and the test pro-
cedure becoming a bottleneck. 

The growing volume of information poses in-
teresting challenges and calls for tools that discover 
properties of data. Data mining has emerged as a dis-
cipline that contributes tools for data analysis and the 
discovery of new knowledge (Kusiak, 2001). The 
Variable Precision Rough Sets (VPRS) model was 
introduced by Ziarko (1993) and is an extension of 
the Rough Set Theory (RST), which is a powerful 
tool for data mining, as it has been widely applied to 
acquire knowledge. The reducts generated by the 
rough sets approach are employed to reduce redun-
dant attributes as well as redundant objects from the 
decision table. The reducts contain less “noisy” data 
and provide a decision table that can yield a substan-
tially lower misclassification rate (Hashemi, et al. 
1998).  
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In this study we utilize the VPRS model for 
a mobile phone test procedure. In the VPRS 
model, the extended Chi2 algorithm is used to 
discretize the continuous attributes, and a 
β -reduct selection method is used to determine 
the required attributes. Compared to the decision 
tree approach, empirical results show promise 
for the VPRS model to reduce the redundant test 
items. 
  

Rough sets (RS) as a mathematical meth-
odology for data analysis were introduced by 
Pawlak (Pawlak, 1991). They provide a powerful 
tool for data analysis and knowledge discovery 
from imprecise and ambiguous data. The RS 
methodology is based on the premise that low-
ering the degree of precision in the data makes 
the data pattern more visible. The RS approach 
can be considered as a formal framework for 
discovering patterns from imperfect data. The 
results of RS approach are presented in the form 
of classification or decision rules derived from 
given data sets. 

RS operates on what may be described as 
a knowledge representation system or informa-
tion system. An information system (s) is shown 
as : 

( , )S U A=  
where U  is a finite set of objects 

1 2( { , ,..., })nU x x x= ; 
A  is the set of attributes (condition at-
tributes, decision attributes). 

Each attribute Aa∈  defines an infor-

mation function aa VUf →: where aV  is 
the set of values of a, called the domain of at-
tribute a. 

If R  is an equivalence relation over U, 
then by RU /  we mean the family of all 
equivalence classes of R  (or classification of 
U ) referred to as categories or concepts of R  
and [ ]Rx denotes a category in R  containing 
an element Ux∈ . 

For every set of attributes AB ⊆ , an in-
discernibility relation )(BInd  is defined as: 

two objects ix  and jx  are indiscernible by 

the set of attributes B in A, if )()( ji xbxb = , 

for every Bb ⊂ . 
 

lower and upper approximations  
The RS theory to data analysis hinges on 

two basic concepts, namely the lower and upper 
approximations of a dataset. The lower and the 
upper approximations can also be presented in 
an equivalent form as shown below:  
The lower approximation of the set 

UX ⊆ and AB ⊆ : 
}.][|{)( )( XxUxXB BIndii ⊂∈=  

The upper approximation of the set 
UX ⊆ and AX ⊆ : 

[ ]{ }.|)( )( φ≠∈= XxUxXB BIndii I  

The variable precision rough sets (VPRS) 
model is an extension of the original rough sets 

Surface Mount Technology  
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Figure 1. A Manufacturing Process of a Mobile Phone 
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model (Ziarko, 2001), which was proposed to 
analyze and identify data patterns that represent 
statistical trends rather than functional trends. 
VPRS deals with partial classification by intro-
ducing a precision parameter β . The β  value 
represents a bound on the conditional probability 
of a proportion of objects in a condition class 
that are classified to the same decision class.  

VPRS operates on what may be described 
as a knowledge representation system or infor-
mation system. An information system (S) con-
sisting of four parts is shown as: 

          ),,,,( fVAUS =   
where U  is a non-empty set of objects; 

A  is the collection of objects; we 
have DCA U= and φ=DC I , where 
C  is a non-empty set of condition attrib-
utes, and D  is a non-empty set of deci-
sion attributes; 
V is the union of attribute domains, 
i.e., a

Aa
VV

∈
= U , where aV  is a finite at-

tribute domain and the elements of aV are 
called values of attribute a; 
F is an information function such that 

ai Vauf ∈),(  for every Aa∈  and 

Uui ∈ . 

Every object that belongs to U  is asso-
ciated with a set of values corresponding to the 
condition attributes C  and decision attributes 
D .  
 
β -lower and β -upper approximations 

Suppose that information system S = (U, A, 
V, f), with each subset UZ ⊆  and whereby an 
equivalence relation R , referred to as an indis-
cernibility relation, corresponds to a partitioning 
of U into a collection of equivalence 
classes { }nEEER ,...,, 21=∗ . We will assume 
that all sets under consideration are finite and 
non-empty (Ziarko, 2002). The variable preci-
sion rough sets approach to data analysis hinges 
on two basic concepts, namely the β -lower and 
the β -upper approximations of a set. The 
β -lower and the β -upper approximations can 
also be presented in an equivalent form as shown 
below: 
The β -lower approximation of the set 

UZ ⊆ and CP ⊆ : 
)}.({)(

)|(1
PExDC i

xZP ir

∈=
≤− β

β U   

The β -upper approximation of the set 
UZ ⊆ and CP ⊆ : 

              
)}.({)(

1)|(1
PExDC i

xZP ir

∈=
−<− β

β U  

where  
)(•E  denotes a set of equivalence classes 

(in the above definitions, they are condi-
tion classes based on a subset of attributes 
P ); 

.
)(

)(
)|(

i

i
ir xCard

xZCard
xZp

I
=  

Quality of classification 
Based on Ziarko (1993), the measure of 

quality of classification for the VPRS model is 
defined as: 

       
{ }

1 ( | )
( ( ) )

( , , ) ,
( )

r i
i

p Z x
card x E P

P D
card U

βγ β − ≤
∈

=
U

                 

(1) 
 

where )(DEZ ⊂ and CP ⊆ , for a speci-
fied value of β . The value ( , , )P Dγ β  meas-
ures the proportion of objects in the universe 

)(U  for which a classification ( based on de-
cision attributes )D  is possible at the specified 
value of β .  
Core and β -reducts  

If the set of attributes is dependent, then 
we are interested in finding all possible minimal 
subsets of the attribute, which leads to the same 
number of elementary sets as the whole attrib-
utes ( β -reduct ) , and in finding the set of all 
indispensable attributes ( core ) . The β -reduct 
is the essential part of the information system, 
which can differentiate all discernable objects by 
the original information system. The core is the 
common part of all β -reducts.     

A β -reduct of the set of condition attrib-
utes P  )( CP ⊆  with respect to a set of de-
cision attributes D  is a subset ( , , )RED P D β  
of P  which satisfies the following two criteria 
(Ziarko, 1993): 

   
)1( ( , , ) ( ( , , ), , );P D RED P D Dγ β γ β β=  
)2(  no attributes can be eliminated 
from ( , , )RED P D β  without affecting the 
requirement (1) .    

To compute reducts and core, the dis-
cernibility matrix is used. Let the information 
system ( , )S U A=  with { }1 2, ,..., nU x x x= . 

We use a discernibility matrix of S , denoted as 
( )M S , which has the dimension nn× , where 
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n  denotes the number of elementary sets, de-
fined as 

     
{ }( ) | ( ) ( ),1 ,ij i jc a A a x a x i j n= ∈ ≠ ≤ ≤ Thus, 

entry ijc  is the set of all attributes which dis-

cern objects ix  and jx . 

The core can be defined as the set of all 
single element entries of the discernibility matrix 
(Pawlak, 1991), i.e. 

     
),(|{)( acAaAcore ij =∈= for some  

   }, ji . 
The discernibility matrix can be used to find the 
minimal subset(s) of attributes, which leads to 
the same partition of the data as the whole set of 
attributes A. To do this, we have to construct the 
discernibility function ( )f A . This is a Boolean 
function and is constructed in the following way:  
to each attribute from the set of attributes, which 
discern two elementary sets, 
( e.g.,{ }4321 ,,, aaaa ) , we assign a Boolean 
variable ‘a’, and the resulting Boolean function 
attains the form )( 4321 aaaa +++ , or it 

can be presented as )( 4321 aaaa ∨∨∨ . If 
the set of attributes is empty, then we assign to it 
the Boolean constant 1 (Walczak, et al. 1999). 
 

Rules Extraction 

The procedure for generating decision 
rules from an information system has two main 
steps as follows: 

Step 1: Selection of the best minimal set 
of attributes (i.e. β -reduct selec-
tion). 

Step 2: Simplification of the information 
system can be achieved by drop-
ping certain values of attributes 
that are unnecessary for the in-
formation system.             

The procedure of the VPRS model has 
five steps as follows: 

Step 1: Discretization of continuous at-
tributes.  

Step 2: Find the full set of β -reduct (i.e., 
attributes selection).  

Step 3: Elimination of duplicate rows. 
Step 4: Elimination of superfluous values 

of attributes. 
Step 5: Rules extraction. 

The RST is a special case of VPRS model.  

 

The Discretization Algorithm 
Deriving classification rules is an impor-

tant task in data mining.  As such, discretiza-
tion is an effective technique in dealing with 
continuous attributes for rule generating. Many 
classification algorithms require that the training 
data contain only discrete attributes, and some 
would work better on discretized or binarized 
data (Li, et al. 2002; Kerber, 1992). However, 
for these algorithms, discretizing continuous 
attributes is a first step for deriving classification 
rules. The Variable Precision Rough Sets (VPRS) 
model is one example. 

There are three different axes by which 
discertization methods can be classified:  local 
versus global, supervised versus unsupervised, 
and static versus dynamic (Dougherty, et al. 
1995). Local methods, such as C4.5 (Quinlan, 
1993), produce partitions that are applied to lo-
calized regions of the instance space. By contrast, 
the global discertization method uses the entire 
instance space to discretize. Several discretiza-
tion methods, such as equal width interval and 
equal frequency interval methods, do not utilize 
instance class labels in the discretization process. 
These methods are called unsupervised methods. 
Conversely, discretization methods that utilize 
the class labels are referred to as supervised 
methods.   

Many discretization methods require some 
parameter, m , indicating the maximum number 
of intervals to produce in discretizing an attrib-
ute. Static methods, such as entropy-based parti-
tioning, perform one discretization pass of the 
data for each attribute and determine the value of 
m  for each attribute independent of the other 
attributes. Dynamic methods conduct a search 
through the space of possible m  values for all 
attributes simultaneously, thereby capturing in-
terdependencies in attribute discretization.  

The ChiMerge algorithm introduced by 
Kerber (1992) is a supervised global discretiza-
tion method. The user has to provide several 
parameters such as the significance level α , 
and the maximal intervals and minimal intervals 
during the application of this algorithm. Chi-
Merge requires α  to be specified. Nevertheless, 
too big or too small a α  will over-discretize or 
under-discretize an attribute. 

An effective discretization algorithm, 
called extended Chi2 algorithm, proposed by Su 
and Hsu (2005) is employed. This algorithm 
utilizes ChiMerge algorithm as a basis and de-
termines the misclassification rate of the VPRS 
based on the least upper bound ),( DCξ  of 
the data set, where C  is the equivalence rela-
tion set, D  is the decision set, and 
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{ }nEEEC ,...,, 21=∗ is the equivalence 
classes. According to Ziarko (1993), for the 
specified majority requirement, the admissible 
misclassification rate ( )β  must be within the 
range 0 0.5.β≤ <  Thus, the following equality 
is used for calculating the least upper bound of 
the data set.  

1 2( , ) max( , )C D m mξ = , (2)
where  

      
{ }1 1 min ( , ) |   and   0.5 ( , )m c E D E C c E D∗= − ∈ <  

      
{ }2 max ( , ) |    and   ( , ) 0.5m c E D E C c E D∗= ∈ < . 

The inconsistency checking of the ex-
tended Chi2 algorithm is replaced by the least 
upper bound ξ  after each step of discretization 

)( originalddiscretize ξξ < . By doing this, the in-

consistency rate is utilized as the termination 
criterion. Moreover, it considers the effect of 
variance in the two merging intervals, whereby 
the adjacent intervals have a maximal normalize 
difference )2/( vdifference ∗=  that 
should be merged.  

Selection of β -reducts 

In the VPRS model, the precision parame-
ter β  can be considered as a misclassification 
rate; usually, it is defined in the domain 
[0.0,0.5)  (Ziarko, 1993). Whereas the VPRS 
model has no formal historical background of 
having empirical evidence to support any par-
ticular method of β -reducts’ selection (Beynon, 
2002), VPRS-related research studies do not 
focus in detail on the choice of the precision 
parameter ( )β  value. Ziarko (1993) proposed 
the β  value to be specified by the decision 
maker. Beynon (2000) offered two methods of 
selecting a β -reduct without such a known β  
value. Beynon (2001) suggested the allowable 
β  value range to be an interval, where the 
quality of classification may be known prior to 
determining the β  value range. 

The β  value of the VPRS model will 
control the choice of β -reducts. Ziarko (1993) 
defined the measure of the relative degree of 
misclassification of the set X  with respect to 
Y  as: 

( )1            if    ( ) 0
( )( , )

0                                   if    ( ) 0

card X Y card X
card Xc X Y

card X

 − >=
 =

I

 

Here, card denotes set cardinality.  

Let X  and Y  be non-empty subsets of 
U . The measure of relative misclassification 
can define the inclusion relationship between 
X  and Y  without explicitly using a general 

quantifier: 
.0),( =⇔⊇ YXcXY  

The majority inclusion relation is defined as: 

≤⇔⊇ ),( YXcXY
β

β . 
The above definition covers the entire family 
of β -majority relations.  

The β -reducts can be found by using the 
following steps: 

Step 1: Find the candidates of β -reducts 
using precision parameter ( )β  
based on (2).  

Step 2: For each candidate of β -reducts 
(subset P ), calculate the quality 
of classification based on (1). 

Step 3: Remove redundant attributes. 
Step 4:  Find the β -reducts. The subset 

)( PXX ⊆ , when its quality of 
classification is the same as that 
of a full set, is a β -reduct. 

三、結果與討論 

For the purpose of an empirical imple-
mentation, we collected data from a mobile 
phone manufacturer located in Taoyuan, Taiwan. 
Each RF functional test includes nine test items 
and they are:  the power versus time (PVT; 
symbol: A), the power level (TXP; symbol: B), 
the phase error and frequency error (PEFR; 
symbol: C), the bit error rate (BER-20; symbol: 
D), the bit error rate (BER-(-102); symbol: E), 
the ORFS-spectrum due to switching transient 
(ORFS_SW; symbol: F), the ORFS-spectrum 
due to modulation (ORFS_MO; symbol: G), the 
Rx level report accuracy (RXP_Lev_Err; symbol: 
H), and the Rx level report quality 
(RXP_QUALITY; symbol: I). Each test item 
according to different channels and power levels 
has separated several test attributes. Each test 
attributes’ form is to be represented as: test 
item-channel-power level, which has a total of 
62 test attributes including 27 continuous value 
test attributes and 35 discrete value test attrib-
utes. 

In this study 168 objects are collected, and 
these objects are separated into a training set that 
includes 112 objects (84 objects that passed; 28 
objects that failed) and a test set that includes 56 
objects (28 objects that passed; 14 objects that 
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failed).                   
 

Since the VPRS model needs the data in a 
categorical form, the continuous attributes must 
be discretized before the VPRS analysis is per-
formed. By using extended Chi2 algorithm, the 
number of continuous attributes is reduced from 
27 to 20. The results are listed in Table 1. 
Therefore, the RF function test has 55 test at-
tributes (35 discrete attributes and 20 discretiza-
tion attributes) for further study. 
 

In this study the objects have been classi-
fied into one of two categories, 0 (passed) and 1 
(failed). By formula (2), the precision parameter 
( )β  value is equal to 0. In this case, the VPRS 
model is reduced to RS model. According to the 
process of finding β -reducts in section 3.2, the 
full set of β -reducts associated with the infor-
mation system is given in Table 2. Since the 
β -reduct {B-114-5, E-114-5, H-965-(-102), 

B-522-0, B-688-15} has the least number of at-
tributes and the least number of combinations of 
values of its attributes, it is selected for further 
study. The ( )M S -information system for this 
β -reduct will be:  {B-114-5, E-114-5, 
H-965-(-102), B-522-0, B-688-15}. That is to say, 
the number of test attributes is reduced from 55 
to 5. Based on the ( )M S -discernibility matrix 
constructed by the ( )M S - information system, 
the superfluous values of the test attributes can 
be eliminated and the extracted rules are listed in 
Table 3. We can see that the objects of the test 
set at rule 3, rule 9, rule 10, rule 11, rule 12, and 
rule 16 are null, while rule 6, rule 13, rule 14, 
and rule 15 show only one object in the test set. 
Since these rules are not a matter for the judg-
ment of the product, they are deleted. The final 
extraction rules are listed in Table 4. From Table 
4. we know that the accuracy of the extraction 
rules in the test set is 98.21% (55/56). 

 
Table 1. Condition attributes’ ranges for extended Chi2 algorithm 

 Range 
‘1’ 

Range 
‘2’ 

Range 
‘3’ 

Range 
‘4’ 

Range 
‘5’ 

Range 
‘6’ 

Range 
‘7’ 

Range 
‘8’ 

Range 
‘9’ 

Range 
‘10’ 

Range 
‘11’ 

Range 
‘12’ 

Range 
‘13’ 

B-10-5 30.62 
~31.92 

31.98 
~32.11 

32.12 
~32.13 

32.14 
~32.36 

32.37 
~32.45 

— — — — — — — — 

B-114-5 30.21 
~31.33 

31.46 
~31.67 

31.68 
~31.82 

31.83 31.84 
~31.85 

31.86 
~31.87

31.88 
~31.89

31.90 31.91 
~32.11

32.13 
~32.17 

— — — 

B-522-0 23.49 
~25.58 

28.39 
~28.44 

28.45 28.46 
~28.62 

28.63 
~28.84 

28.85 28.86 
~28.97

28.99 
~29.01

29.02 
~29.07

29.08 
~29.09 

29.10 
~29.13 

29.14 
~29.35

29.37

B-688-15 -3.01 
~-0.63 

0.69 
~0.94 

0.95 0.96 
~1.15 

1.16 
~1.19 

1.21 
~1.32 

— — — — — — — 

B-688-0 23.45 
~26.27 

28.95 
~29.07 

29.08 
~29.20 

— — — — — — — — — — 

B-688-3 19.37 
~23.57 

23.68 
~23.83 

23.84 
~23.89 

23.90 
~24.06 

— — — — — — — — — 

B-688-7 11.34 
~14.74 

15.11 
~15.50 

15.51 15.52 
~15.70 

— — — — — — — — — 

B-72-11 19.35 
~20.54 

20.55 
~21.07 

— — — — — — — — — — — 

B-72-19 3.31 
~5.24 

5.28 
~5.33 

5.34 
~5.35 

5.36 
~5.64 

— — — — — — — — — 

B-72-5 30.25 
~31.61 

31.62 31.63 
~31.68 

31.69 
~31.74 

31.75 
~31.82 

— — — — — — — — 

B-72-7 27.51 
~28.89 

28.91 
~28.98 

28.99 
~29.36 

— — — — — — — — — — 

B-875-0 25.98 
~27.98 

28.06 
~28.28 

28.29 
~28.64 

28.65 
~28.66 

28.67 
~28.69 

28.72 28.73 
~28.87

28.91 
~29.08

     

B-965-5 30.70 
~32.46 

32.48 
~32.99 

33.00 
~33.26 

— — — — — — — — — — 

E-10-5 0.00000 
~0.07284 

0.11655 
~3.07401 

— — — — — — — — — — — 

E-114-5 0.00000 
~0.04371 

0.05828 
~0.07284 

0.08741 
~3.74300 

— — — — — — — — — — 

E-522-0 0.07284 0.10198 
~0.30594 

0.32051 0.33508 
~0.49534 

0.99068 
~3.88986

— — — — — — — — 

E-688-0 0.00000 
~0.07284 

0.08741 
~0.21853 

0.32051 
~3.24883 

— — — — — — — — — — 

E-72-5 0.00000 
~0.0291 

0.0437 0.0583 
~0.1020 

0.1603 
~3.3217 

— — — — — — — — — 

E-875-0 0.08741 
~0.58275 

1.15093 
~3.77331 

— — — — — — — — — — — 

E-965-5 0.00000 
~0.04371 

0.05828 
~0.17483 

0.43706 
~3.52564 

— — — — — — — — — — 
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Table 2. β -reducts associated with the information system 

β -reduct 

1 {B-114-5, H-114--102, B-522-0, I-522-(-102), 
B-688-15} 

15 {E-72-5, B-114-5, H-114-(-102), B-522-0, 
I-522-(-102), H-875-(-102)} 

2 {B-72-7, B-114-5, H-114-(-102), B-522-0, 
B-688-15} 

16 {B-114-5, H-114-(-102), B-522-0, I-522-(-102), 
H-875-(-102), I-875-(-102)} 

3 {B-10-5, B-114-5, H-114-(-102), B-522-0, 
B-688-3} 

17 {B-72-7, B-114-5, H-114-(-102), B-522-0, 
E-688-0, H-875-(-102)} 

4 {B-114-, H-114-(-102), B-522-0, E-522-0, 
B-688-15} 

18 {H-10-(-102), B-72-7, B-114-5, B-522-0, 
E-688-0, H-875-(-102)} 

5 {B-72-19, B-114-5, H-114-(-102), B-522-0, 
B-875-0} 

19 {H-10-(-102), B-72-5, E-72-5, B-114-5, 
B-522-0, H-875-(-102)} 

6 {B-114-5, E-114-5, H-965-(-102), B-522-0, 
B-688-15} 

20 {H-10-(-102), B-72-5, B-114-5, B-522-0, 
H-875-(-102), I-875-(-102)} 

7 {B-114-5, H-114-(-102), B-522-0, 
I-522-(-102), B-688-3, I-875-(-102)} 

21 {H-10-(-102), B-72-5, B-114-5, B-522-0, 
H-688-(-102), I-875-(-102)} 

8 {B-72-5, E-72-5, B-114-5, H-114-(-102), 
B-522-0, G-522-0} 

22 {B-72-5, B-114-5, H-114-(-102), B-522-0, 
G-522-0, B-875-0} 

9 {B-72-7, B-114-5, H-965-(-102), B-522-0, 
E-688-0, I-875-(-102)} 

23 {H-10-(-102), B-72-19, B-114-5, C-965-5, 
B-522-0, B-688-15} 

10 {H-10-(-102), B-72-5, E-72-5, B-114-5, 
H-114-(-102), B-522-0} 

24 {H-10-(-102), E-72-5, B-114-5, B-522-0, 
I-522-(-102), F-875-0} 

11 {B-72-5, E-72-5, B-114-5, H-114-(-102), 
B-522-0, B-688-0} 

25 {H-10-(-102), C-72-5, B-114-5, E-114-5, 
B-522-0, I-522-(-102)} 

12 {B-72-5, E-72-5, B-114-5, H-114-(-102), 
B-522-0, I-522-(-102)} 

26 {H-10-(-102), G-72-5, B-114-5, E-114-5, 
B-522-0, I-522-(-102)} 

13 {B-72-5, E-72-5, B-114-5, H-114-(-102), 
B-522-0, G-688-0} 

27 {H-10-(-102), B-72-7, B-114-5, E-965-5, 
B-522-0, B-688-15} 

14 {B-114-5, H-114-(-102), B-522-0, 
I-522-(-102), B-875-0, G-875-0} 

  

 
Table 3. Results of rule extraction (VPRS) 

Accuracy Method Extraction Rules 
Training Set Test Set 

1. If 32.13≦B-114-5<31.46, then one has failed. 100% (5/5) 100% (4/4) 
2. If 31.46≦B-114-5≦31.82, 0≦E-114-50.07284, 

H-965-(-102) ≦7 and 28.46≦ B-522-0≦28.97, then one 
is passed. 

95.12% (39/41) 95.83% (23/24)

3. If H-965-(-102), then one has failed. 100% (5/5) — 
4. If 31.68≦B-114-5≦31.82, 0≦E-114-5≦0.04731, 

H-965-(-102)=1 and 0.69≦B-688-15≦1.15, then one is 
passed. 

100% (3/3) 100% (2/2) 

5. If 31.91≦B-114-5≦32.11, H-965-(-102) ≦1 and 
0.69≦B-688-15≦1.15, then one is passed. 

100% (20/20) 100% (6/6) 

6. If 31.91≦B-114-5≦32.11, H-965-(-102) =1 and 
1.16≦B-688-15≦1.19, then one has failed. 

100% (1/1) 100% (1/1) 

7. If 0.08741≦E-114-5, then one has failed. 100% (6/6) 100% (9/9) 
8. If 31.84≦B-114-5≦31.89, 28.46≦B522-0≦29.07 and 

0.69≦B-688-15≦1.19, then one is passed. 
100% (9/9) 100% (7/7) 

9. If 31.84≦B-114-5≦31.87, 28.86≦B-522-0 and 
1.21≦B-688-15, then one has failed. 

100% (2/2) — 

10. If B-688-15=0.95, then one has failed. 100% (2/2)  — 
11. If 31.83≦B-114-5≦31.89 and 0.69≦B-688-15≦0.94, 

then one is passed. 
100% (5/5) — 

12. If 31.68≦B-114-5≦31.82, H965-(-102) ≦1 and 
1.21≦B-688-15, then one is passed. 

100% (2/2) — 

13. If 31.88≦B-114-5 and H-965-(-102) ≦1 and 
1.21≦B-688-15, then one is passed. 

100% (2/2) 100% (1/1) 

 
VPRS 

14. If 0≦E-114-5≦0.07284, H-965-(-102) ≦2 and 
B-522-0≧28.63, then one has failed. 

100% (4/4) 100% (1/1) 
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Table 3 (continued). Results of rule extraction (VPRS) 
15. If B-114-5≧31.90, 0.05828≦E-114-5≦0.07284, 

H965-(-102)=1 and 0.69≦B-688-15≦0.94, then one is 
passed. 

100% (3/3) 100% (1/1)  

16. If 23.49≦B-522-0≦25.58 and B-688-15≦0.68, then one 
has failed. 

100% (1/1) — 

Notes: 1. ( / ) indicates (number of correct instances/number of total instances). 
      2. “—”indicates the object in the set is null. 

 
Table 4. Final results of rule extraction (VPRS) 

Accuracy Method Extraction Rules 
Training Set Test Set 

1. If 32.13≦B-114-5<31.46, then one has failed. 100% (5/5) 100% (4/4) 
2. If 31.46≦B-114-5≦31.82, 0≦E-114-50.07284, 

H-965-(-102) ≦7 and 28.46≦ B-522-0≦28.97, then one 
is passed. 

95.12% (39/41) 95.83% (23/24)

3. If 31.68≦B-114-5≦31.82, 0≦E-114-5≦0.04731, 
H-965-(-102)=1 and 0.69≦B-688-15≦1.15, then one is 
passed. 

100% (3/3) 100% (2/2) 

4. If 31.91≦B-114-5≦32.11, H-965-(-102) ≦1 and 
0.69≦B-688-15≦1.15, then one is passed. 

100% (20/20) 100% (6/6) 

5. If 0.08741≦E-114-5, then one has failed. 100% (6/6) 100% (9/9) 

 
VPRS 

6. If 31.84≦B-114-5≦31.89, 28.46≦B522-0≦29.07 and 
0.69≦B-688-15≦1.19, then one is passed. 

100% (9/9) 100% (7/7) 

Notes: ( / ) indicates (number of correct objects/ number of total objects). 
 

Using the Decision Tree Approach  

In this section the See 5 software package 
is used to perform the computation. The pa-
rameters of See5 utilize its default setting. The 
tree structure is shown in Figure 2., from which 
we know that C-965-5, B-688-3, H-965-(-102), 
B-688-0, E-114-5, and G-114-5 are important 
attributes of the RF functional test. The number 
of RF functional test attributes will be reduced 

from 55 to 6. The extracted rules are listed in 
Table 5. We know that the objects of the test set 
at rule 3 and rule 7 are null, while rule 2 and rule 
4 show only one object in the test set. Since 
these rules are not a matter for the judgment of 
the product, they are deleted. The final extrac-
tion rules are listed in Table 6. In the test set, 
three objects do not match any of the rules and 
the accuracy of the extraction rules is 94.64% 
(53/56).            

0=0.7284>=>=0.8741 =1

>=29.08
29.07>=

1>=
>=12

23.84>= >=23.90

=0
>=1

C-965-5

B-683-3
1
(9/9)

H-965-(-102)
1
(8/8)

B-688-0
1
(5/6)

E-114-5 G-114-5

0
(79/81)

1
(2/2)

0
(4/4)

1
(2/2)

Figure 2. Tree structure of the information system 
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Table 5. Results of rule extraction (See 5 software) 
Accuracy Method Extraction Rules 

Training Set Test Set 
1. If C-965-5≧1, then one has failed. 100% (9/9) 100% (3/3) 
2. C-965-5 and B-688-3≧23.90, then one has failed. 100% (8/8) 100%(1/1) 
3. If C-965-5=0, B-688-3≦23.84 and H-965-(-102)≧12, 

then one has failed. 
85.71%(6/7) — 

4. If C-965-5=0, B-688-3≦23.84, H-965-(-102)≦1, B-688-0
≧29.08 and G-114-5=0, then one is passed. 

100% (4/4) 100% (1/1) 

5. If C-965-5=0, B-688-3≦23.84, H-965-(-102)≦1, B-688-0
≧29.08 and G-114-5=1, then one has failed. 

100% (2/2) 100% (8/8) 

6. If C-965-5=0, B-688-3≦23.84, H-965-(-102)≦1, B-688-0
≦29.07 and E-114-5≧0.8741, then one has failed. 

97.60 % (81/83) 100% (40/40)

See 5 

7. If C-965-5=0, B-688-3≦23.84, H-965-(-102)≦1, B-688-0
≦29.07 and E-114-5≦0.8741, then one is passed. 

100% (2/2) — 

Notes: 1. ( / ) indicates (number of correct instances/number of total instances). 
      2. “—”indicates that the object in the set is null. 
      3. In the test set, three objects do not match any of the rules. 

Table 6. Final results of rule extraction (See 5 software) 
Accuracy Method Extraction Rules 

Training Set Test Set 
1. If C-965-5≧1, then one has failed. 100% (9/9) 100% (3/3) 
2. If C-965-5=0, B-688-3≦23.84, H-965-(-102)≦1, B-688-0
≧29.08 and G-114-5=1, then one has failed. 

100% (2/2) 100% (8/8) 
See 5 

3. If C-965-5=0, B-688-3≦23.84, H-965-(-102)≦1, B-688-0
≦29.07 and E-114-5≧0.8741, then one has failed. 

97.60 % (81/83) 100% (40/40)

Notes: 1. ( / ) indicates (number of correct instances/number of total instances). 
      2. In the test set, three objects do not match any of the rules. 
 
A comparison 

The effectiveness of the VPRS model is 
conducted at the test line in the case company. 
Assume that the inspection accuracy of the 
original test procedure is 100%. According to 
Table 7., the implementation results under nor-
mal production over six weeks confirm that the 
overall inspection accuracies for the VPRS 
model and decision tree approach are 99.75% 
and 99.61%, respectively. This fact shows that 
the quality of the RF functional test will be not 
affected, when some unimportant test items are 
removed by using the VPRS model or the deci-
sion tree approach. The VPRS model outper-

forms the decision approach in terms of inspec-
tion accuracy. Moreover, the test time of the 
original RF test procedure (62 test attributes) is 
190 seconds, while the VPRS model (5 test at-
tributes) is 34.5 seconds and the decision tree 
approach (6 test attributes) is 43.2 seconds. This 
leads to the number of RF test machines is re-
duced from 8 to 4, which saving equipment cost 
6 million NT dollars (each machine cost is 1.5 
million NT dollars) from implementation the 
VPRS model in RF test procedure. Those ex-
tracted rules that form Table 4. (or Table 6.) will 
help a company to construct a knowledge base to 
train new engineers.   

Table 7.  A comparison of the VPRS model and decision tree 
VPRS Decision Tree (See 5 software) 

Week Pass instances 
accuracy (%) 

Fail instances 
accuracy (%) 

Pass instances 
accuracy (%) 

Fail instances 
accuracy (%) 

1 100% (639/639) 75% (6/8) 100% (639/639) 75% (6/8) 
2 100% (1240/1240) 86.36% (19/22) 100% (1240/1240) 72.72% (16/22) 
3 100% (316/316) 100% (2/2) 100% (316/316) 100% (2/2) 
4 100% (108/108) 100% (2/2) 100% (108/108) 100% (2/2) 
5 100% (198/198) 75% (3/4) 100% (198/198) 100% (4/4) 
6 100% (305/305) 80% (4/5) 100% (305/305) 40% (2/5) 

100% (2806/2806) 83.72% (36/43) 100% (2806/2806) 74.42% (32/43) Overall 
99.75% (2842/2849) 99.61% (2838/2849) 

Notes: ( / ) indicates (number of correct instances/number of total instances). 
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四、計劃成果自評 

The technology employed by mobile tele-
communications is rapidly evolving with shorter 
product life cycles and a shortening of the time 
to market expectations, such that mobile phone 
manufacturers require an effective method to 
reduce the operation time to satisfy market ex-
pectations. Data mining is an emerging area of 
computational intelligence that offers new theo-
ries, techniques, and tools for processing large 
volumes of data. The VPRS is a powerful tool of 
data mining to reduce the redundant attributes 
and extract useful rules. 

This study employed the VPRS model to 
reduce the redundant RF functional test items in 
mobile phone manufacturing. We utilized the 
extended Chi2 algorithm to discrete continuous 
attributes, and chose a suitable method to select 
the β -reducts. Implementation results show 
that the test items have been significantly re-
duced. By using these remaining test items, the 
inspection accuracy is very close to that of the 
original test procedure. VPRS also demonstrates 
a better performance than that of the decision 
tree approach. Moreover, the operation time of 
the RF functional test procedure by using the 
VPRS model is significantly less than that of the 
decision tree approach and the original RF func-
tional test procedure. By using the VPRS model, 
the throughput will increase and the time to 
market will be reduced. In addition, the extracted 
rules constructed in this study can be used to 
interpret the relationship between condition and 
decision attributes and help companies to con-
struct their own knowledge base for training new 
engineers.      
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