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Abstract

For a second-order stationary process,
the semivariogram and the covariogram are
of the
dependence. In time series, the covariogram

two  measures second-order

is used more often, while in geostatistics, the

semivariogram is preferred. The main reason
is because the semivariogram can be
discussed general processes.
However, the covariogram can only be used
when the underlying process satisfies
second-order stationarity which is more
restrictive than intrinsical stationarity. In
practical application, these measures of
second-order  dependence are usually
unknown and have to be estimated from the
data. Hence, the main object of this study is
to compare the asymptotic properties of the
sample semivariogram and the sample
covariogram. In this research, I found that a
logarithmic transformation of the sample
semivariogram shows good normality
approximation for moderately large sample
size. Thus, we can usually have higher power
in testing some directional symmetry
properties with the logarithm of the sample
semivariogram. This result shows the
importance of the semivariogram in the
application of geostatistics further. Data
analysts ought to use the smivariogram more
often.

in more
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The Cause and the Object

The problem considered in this study
arises that the variogram is widely used in
geostatistics, while the covariogtram is used
much more often in time series. The main
reason why variograms are more popular in
geostatistics is because of its extra generality.
Esentially, the variogram and covariogram
are two equivalent tools in characterizing the
second-order dependence of the data when
the underlying process is second-order
stationary, However, if the process only
satisfies intrinsical stationarity, then only the
smivariogram can be used. Thus, it is
common to work with the estimator of the
variogram in geostatistical analysis. In this
study, it is shown that beyond the greater
generality, estimation of the variogram has
more important advantages over estimation
of the covariogram.

Results and Discussion.
Let {Z(S):S eD} denote a random

field defined over a domain D . The

population semivariogram at lag# is defined
by

7(k) = -;-Var[Z(x +h) - Z(x)] s

forall x,x+heD.
The covariogram is

(k)= Co Z(x+h), Z(x)]..
A second-order stationary random field is

intrinsically stationary, with the

semivariogram (k) = C(0)- C(h).

Now suppose that{Z(x)} is observed at

distinct  sites, yielding

X, X550 X, €D

observations, Z(x,),...,Z(x,) . The Classical

n

estimator of y(#) is

P = 5y S+ )20

where N denotes the number of

pairs{z(xj),z(xj)} such that x,=x,+# and

the summation is over the N available pairs.
This called the sample
semivariogram. Similarly, the covariogram is

estimator is

estimated by the sample covariogram

GORESY {[Z(x oB)- ZJ(Z(x) . z)}

x

where 7= lz Z(x)-
R

The correlogram p(#) can be estimated by

the sample correlogram

)= C(R)/1C(0).

Since in most geostatistical applications two
dimensional processes are observed much
often, the study focuses the
comparisons on the two dimensional cases.
Specifically, the semivariogram is denoted as

more

y(h, k), where h is the lag in the x-direction

and k is the lag in the y-direction. Results of
the comparisons of the sample covariogram
and the sample semivariogram are stated in
the following.

(1) Asymptotic Bias

Theorem 1  Let {Z(S):S eD} be a second-

order stationary random field which is
observed on a regular rectangular rxc
lattice. Assume that the sequence of

{cif)}) s

summable, i.e. iik‘(g j)l<oc. Then for

f=—a0 j=—w0

covariances, absolutely

any fixed &, k




© o

limre [é(h,k]-—C(h,k)] =~ >.Cli.j)

i=—00 j=—o

@

Several interesting aspects of the asymptotic
bias are given by Theorem 1. First, this bias
is the same for every lag regardless of the
latter’s size or direction. Second, under the
assumption of a nonnegative convariance
function, an increased correlation in any one
direction worsens the bias in every direction.

Third, let us compare the bias of ¥ C{A0)
with that of NC(k) since (A',‘(h,o) can be

regarded as an estimator of 6‘(};) in the

x-direction. Assuming again that the
covariogram is nonnegative, the asymptotic

bias of Nf:(h,o) is larger in magnitude than

that of Né(h) if there is any dependence

whatsoever in the y-direction, None of these
features apply to the sample semivariogram,
of course, because it is unbiased.
(2) Asymptotic Covariance Structures

By investigating the asymptotic
covariance structures of the sample
semivariogram and the sample covariogram,
I conclude that if the process is reflection
symmetric then so are the asymptotic
covariance structures of the sample
covariogram and the sample semivariogram,
Furthermore, if the process is isotropic then
the asymptotic covariance of the sample
covariogram and the sample semivariogram
at any two lags may be equal to that
corresponding to those lags obtained by
interchanging the x and y coordinates of the
original lags.
Theorem 2 Let all the assumptions of
Theorem 1 hold. If, in addition, the process
is reflection symmetric, then for any fixed

(hvhy) and (g,,gy),

limre Covli(?‘(h,,hy),é(gx,gy)]

£-¥0

Lam ]

= limre Cov[&(—h,,hy),a'(—g,s gy]] .

C—po0

1i_g}rc Cov{;(hx , hy),}/;(gx > 8y )}

3w

= limre Covl:}t(—hx,hy),}j(—g,s gy)] :

£=pe0

Furthermore, if the process is isotropic and
the internodal spacing is the same in the x
and y directions, then

limre Cov[&(h,,hy),e'(g,>gy)]

C=po0

F—ya0

=limre Cov—a'(h h,),é(gng)]

=

roc

=limrc Cov-a’(—h h ),6(—3’,:&)}

[ 2]

row

= limre Cov_a'(—h h ),E‘(—g,,g,,)]

o

limre COV[;(h,ghy)a;(gx5gy)]

¢—ha

=limre Cov ;(hy,hx),;{gy,g,)]

[ 1m3

- A

= lirgrc Cov ;(“hy,hx )s;(_gy’gx)

[ Lo

= limre Cov }:(—h,;hy):;(_gx’g)’)J

r—yw
L

€=

It is noted that y(hx,hy)=C(0,0)—C(hx,hy)




under second order stationarity. However, the
sample  semivariogram  and
covariogram do not satisfy the same relation

sample

in general i.e. ;(hx,hy) * 6‘(0,0)— E‘(hx, h,).

To investigate whether the sample
covariogram or the sample semivariogram is
most suitable for testing the goodness of fit
of any proposed second-order property, the
sampling  variations of the sample
covariogram and  semivariogram  are
compared. Now, define

oo

0‘(”,; A)(gr) = limre Cov[a'(h, N ], 6‘( £::8, )]

C—»0

G(’!-Jw)(sx,gv) = EE{E e Cov[; (hﬂhy)’; (gx’gy)]

3@

Theorem 3 Assume that {Z(S)} is a

second-order stationary (aussian process.

For any fixed lags (h,h,) and (g..5,) >

Thurei) ” gy L and only

@ @

it. 3. 3.C(p.a) [Clp.g)-C(p~hng~h))

p=-co qz—d)

—C(p+ £..9+ gy)] >0

An important special case of Theorem 3

is that the asymptotic variance of

Jre ;(hx,h ,) is larger than the asymptotic
variance of Jrc (Aj(hx,hy) if and only if

Y Y.Cp.g) [Clp.a)-Clp-hq-h,)

p=~'@ q:-‘m

~Clp+h,q+h)|>0

Corollary 3.1 Assume that {Z(S)} is an

(mx,my) -dependent, second-order stationary

Gaussian process. For any two lags (h,,,hy)

~and (gx5gy)’

() If max(|)g,l)>2m, or max(hy, gy)>2my

then o ) z O—Eh,,hy)(g,,gy) ;

(h,,»‘!,.)(g,.g,,

(It ﬂhxl >2m, or b, > Zmy) and

([gxl >2m, or g, > 2my) then

L o

=23, > Ca,p);

p=—0g=—0

o-(hx Jr,)(g, '3}') B O—E”* "’yl(gn&’x)

@ I (n

(

>m, or h, >my) and

g|>m, or g, > my) then

Tl ia)” Tl ients)”

Since the differences among elements of the
sample covariogram or sample emivariogram
are used in testing for some directional
properties, it is important to investigate the
asymptotic covariance matrix of those
differences further. It is interesting that
although the asymptotic covariance matrices
are different, the asymptotic covariance
matrices of vectors of within-estimator
differences are the same.

Theorem 4. Assume that {Z(s5)} is a
second-order stationary Gaussian process.

For any fixed lags (4,,4,), (g..8,)> (4.u,)

and (v vy)

Xl

r—w

limre Cov {[6@,,@)— (t’(gx,gy)}

[




[é(ux,uy)_é(v,,vy)]}

=}i_{2rc Cov {[;(hx,hy)—';(gxigy)]:

L0

[P )5

(3) Asymptotic Normality

Lu (1994), (1997) showed that
under the same assumptions, the sample
covariogram and sample semivariogram have
asympiotic normal distributions. Moreover,
by the classical variance stabilization

transformation, ]og{;(h)} and ;)(h) also

have asymptotic normal distributions. In
practice, the  variance
transformation may lead to normality faster
for morderately small sample sizes. To

stabilization

support this evidence, the Anderson-Darling
normality test was used. Realizations of zero
mean, second-order stationary Gaussian
random fields with the semivariogram given
by

3r 7 .
y(r;@): GI[E—Z—HEJ lfOSrSﬁz

&, o.w.
were generated on a [0x10 square gnd with
unit sparing, #, =1 and 6= . From the

results, it’s evident that log{;(,,)} has

converged to normal distribution very well
for moderately large sample sizes, #=100.

However, the convergence of ;(h) and

(A?(h) is not good. Especially, 5(]1) shows

very strong abnormality. According to the

simulation, it needs about 400 samples or

more for &(h) having good normal

approximation. It is interesting that the
results show that the rate of convergence of

fo(h) is faster than that of ;’;(h) Thus, using
;Aa(h) in testing for directional symmetry
properties is better than using ;(h) This

also implies that ;;(h) would be the best

choice for testing for separability.
(4) Tests for Reflection Symmetry and
Isotropy

Lu (1994) established a y*-test for
reflection symmetry and isotropy with the
sample semivariogram and the sample

covariogram. Since 10g{;(h)) and ;)(h)

converge faster than ;(h) and a'(k), their

tests for reflection symmetry and isotropy
perform better, too. So here I focus the
comparisons of test performance on

log(;r(h)) and ;(h) Specifically, 1 report

the isotropy test results here.

Gaussian random fields exhibiting
isotropy or geometric anisotropy of different
strengths and orientations were generated on
a ¢x ¢ square grid with unit spacing. Each
random field had a covariance structure
determined by an isotropic or geometrically
anisotropic spherical semivariogram given
by

3
Y(ri6)= 9,(%-%} ifo<r<g,
é, o.w.

where y =(# Bh)Z and Bis a 2x 2 positive

definite matrix. Parameter 4, was equal to 1




throughout the study and g, corresponding
to different strength of spatial dependence
was taken to equal to 1, 5 and 8 respectively.
Five B -matrices were used:

B_lO Bﬂ]O g |10
°“lo 117 ' lo 47 T o sl

(52 -3 ~15/2
PTi=32 52| 17/2 ]
One thousand realizations of n=c*

observations were obtained for each
choice of B -matrix and two choices of n,

n=100 and n=400. We took ¢ =¢ =¢

. =

17/2
[—1 512

with £=1 and (=2 and m =m =m,.
Basically, when ¢=1, tests based on
log{;(h)} and ;)(h) almost  perform
equivalently well. Especially, the Type I

error rates of tests based on ;)(h) are

always less than nominal levels and the
power is often high. However, when ¢=2,

the power of tests based on ;(h) seems

less than that of log{;(h]}- Hence, it is
suggested to use log{;:(h)} in testing

reflection symmetry and isotropy and B(h]

may be used in testing for separability.

4 Comments on the results of the study.
For a second-order stationary
process, the covariogram and the
semivariogram are two functions which can
be used to characterize the spatial
dependence. Each has its merits, but the
semivariogram has been given priority in
spatial statistics mainly because use of the

semivaariogram  allows more general
processes to be considered. In this study, [
compare the two estimators in terms of their
asymptotic bias, covariance structures, rate
of convergence, and capability of testing for

directional symmetry properties. Through the

simulation study, 1 conclude that log{;(h)}

is most suitable for testing the goodness of fit
of any proposed second-order property.
However, some theoretical works still need
to be done about the rate of convergence of
these estimators and the reasons which may
affect the test performance. Finally, I would
like to emphasize further that practitioners of
geostatistics ought to make more use of
variogram in analyzing geostatistical data .
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Table 1 Number of rejections for the 20 data sets using the Andeerson-Darling test of

normality.
lag O 0 S )
(1,0 1t 1 19 7
(0,1) 11 3 20 5
(1,1) 15 1 20 3
(-1,1) 11 1 20 3
Table 2(a) Isotropy Tests based on log(7 (#)). ( the empirical proportion of times that
isotropy was rejected )
n 92 ! m, Bo B1 Bz B3 B4
100 2 1 i 0071 0525 0.500 0153  0.143
2 0.034 0400 0381 0083 0.081
2 1 0.194 0355 0355 0213 0227
2 0.126 0250 0290 0140  0.139
5 1 1 0070 0822 0993 0595 0919
2 0.042 0674 0988 0498 (.878
3 0026 0449 0937 0264  (0.787
5 0000 0049 0458 0026 (.186
2 l 0.133  03%  0.625 0286  0.490
2 0.104 0338 0.609 0276 0485
3 0059 0210 0530 0187 0317
5 0007 0053 0171 0048 0073
8 1 1 008 0816 0997 0546 0931
2 0.040 0647 098% 0448 0919
4 0019 0170 0802 0112  0.587
3 0.000 0000 0000 0000 0.000
2 1 0.156 0391 065 0280 0537
2 0.084 0300 0655 0213 0438
4 0.035 0088 0347 00381 0.216
g 0.000 0000 0000 0000 0.000
400 2 I 1 0.056 098 0990 0283 0.325
2 0.050 0984 0984 0249  0.295
2 1 0.057 0920 0920 Q.131  0.127
2 0044 0892 0.892 0100 0.100
5 1 1 0075 1000 1.000 0997  1.000
2 0038 1,000 1.000 0991 1.000
3 0.034 1000 1000 0994  1.000
5 0011 1.000 1.000 0988  1.000
2 [ 0206 0923 0926 0883  (.908




2 0.180 0970 0999 0948 09953
3 0101 0988  1.000 0960 00995
5 0054 0974 0998  0.890  0.993
1 1 0.081 1.000  1.000 0995  (.994
2 0.048 1000  1.000 0.991 1.000
4 0032 0999  1.000 0983  1.000
8 0002 0.941 1.000  0.841 1.000
2 1 0.184 0881 0931 0774 0925
2 0.150 0910 0949 0824  0.909
4 0.100 0940 0965 0.877 0.955
g 0029 0597 0983 0462  0.963
Table 2(b) Isotropy Tests based on (k)
n 0, ¢ m, B, B, B, B, B,
100 2 1 1 0.104 0.613 0.589 0.174 0.193
2 0.068 0.532 0.506 0123 0.128
2 1 0.117 0.529 (.489 0.204 0.212
2 0.216 0.534 0.496 0.287 0.296
5 1 1 0.007 0.551 0.719 0.478 0.814
2 0.016 0.621 0.592 0.576 0.795
3 0.009 0.484 0.569 0.460 0.762
5 0.006 0.202 0.511 0214 0.599
2 1 0.008 0.290 0.512 0.294 0.656
2 0.069 0.404 0.273 0429 0.521
3 0.074 0.302 0.236 0.287 0.480
5 0.039 0.148 0.174 0.127 0.322
8 1 1 1 0000 0.210 0.884 0.177 0.807
2 0.001 0.279 0.648 0.339 0.695
4 0.005 0.180 0.488 0.234 0.513
8 0.000 0.000 0.000 0.000 0.000
2 1 0.004 0.088 0.614 0.121 0.589
2 0.021 0.229 (.326 0.243 0.344
4 0.028 0.143 0.161 0.153 0.236
8 0.000 0.000 0.600 0.000 0.000
400 2 1 1 0.061 0.985 0.990 0.315 0.341
2 0.053 0.985 0.988 0.288 0.326
2 1 0.033 0.933 0.936 0.123 0.157
2 0.055 0.930 0.937 0.141 0.161
5 1 1 0.000 0.989 0.938 0.956 0.991
2 0.003 0.999 0.816 0.996 0.983
3 0.011 0.997 0.793 0.994 0.974
5 0.011 0.990 0.799 0.983 0.967
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0.002
0.004
(.008
0.012
0.000
0.000
0.001
0.000
0.000
0.000
0.600
0.003

0.784
0.973
0.960
0.865
0.514
0.701
0.890
0.551
0.138
0.383
0.708
0.326

0.829
0.514
0.359
0.363
1.000
0.907
0.565
0.681
0.994
0.698
0.250
0.300

0.630
0.977
0.950
0.872
0.557
0.865
0.964
0.794
0.193
0.463
0.758
0.385

0.982
0.914
0.912
0.906
0.994
0.871
0.567
0.624
0.974
0.586
0.342
0.367
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