對分佈於離散具值域的模之自同胎代數的同構問題 研究

A study of the isomorphism problems of endomorphism algebras of modules over discrete valuation domains

計畫編號: NSC 89-2115-M-034-001

執行期限: 88 年 8 月 1 日至 89 年 7 月 31 日

主持人:程友文 中國文化大學 應用數學系

E-mail: yucheng@faculty.pccu.edu.tw

計畫參與人員:章立維 台灣大學數學研究所

一、中文摘要

如果,已知分佈於相同環上的兩模具 有同構的自同胎環,而我們能得到該二模 本身亦同構的理論,我們稱之為同構理論 (或者同構問題)。假設, M和 N 是分佈 於完備離散具值域 R 上的兩 torsion 模, 且我們有同構的自同胎代數 End(M)與 End(N),則 Baer 和 Kaplansky [K54] 證 明了這二模 M 和 N 本身亦為同構。 Wolfson [W64] 對 torsion-free 模的情形 也提出了一類似的證明。

在本計畫中,我們主要的目的是爭對 分佈於完備離散具值域的任意單一模 M, 考慮當預知 白 同 胎 $\operatorname{End}(M) \cong \operatorname{End}(N)$ 為同構時,也能得到 M與 N 同構的各種條件。在尋求條件的同 時,我們發現了,所有分佈於完備離散具 值域上模的同構理論問題,都可以化簡成 M為 reduced 模且 M/tM 為 divisible 模 的類似同構問題。也就是說,如果我們能 解決後者的問題,我們也就可以解決所有 的同構問題。對此,我們也提出了一種同 構理論。

關鍵詞:自同胎代數、模、離散具值域、 同構理論、同構問題

Abstract

An isomorphism theorem (or and isomorphism problem) is one which concludes that two modules over the same ring are isomorphic if their endomorphism rings are isomorphic. If M and Nare torsion modules over a complete discrete valuation domain R such that $\operatorname{End}(M)$ and $\operatorname{End}(N)$ are isomorphic, then Baer and Kaplansky [K54] proved that M and N are isomorphic modules. Wolfson [W62] proved a similar theorem for torsion-free modules.

In this project, our primary purpose is to consider an arbitrary module M over a complete discrete valuation domain R, and search all possible conditions, under which the isomorphism $\operatorname{End}(M) \cong \operatorname{End}(N)$ will give an isomorphism from M onto N. As results, we show that the isomorphism problems of modules over a complete discrete valuation domain can be reduced to the isomorphism problems of reduced modules M with M/tM divisible, and solve one of such isomorphism problems.

Keywords: endomorphism algebra, module, discrete valuation domain, isomorphism theorem, isomorphism problem

二、緣由與目的

A discrete valuation domain R is a PID with exactly one prime element p. For an R-module M, where R is a discrete valuation domain, we can introduce a topology on M by taking $\{p^nM:n\in \mathbb{Z},n\geq 0\}$ to be a fundamental system neighborhood of 0. A comple- 1. $te\ R$ -module M is a Hausdorff topological space in which every Cauchy sequence converges. To fix notation, throughout this report, we shall denote R a complete discrete valuation domain. If M is an R-module, the torsion submodule of M will be denoted by tM. We denote the divisible summand of M by $p^{\infty}M$. Thus $M \cong (M/p^{\infty}M) \oplus p^{\infty}M$, where $M/p^{\infty}M$ is reduced.

Given R-modules M and N, we have two associated R-algebras $\operatorname{End}(M)$ and $\operatorname{End}(N)$. Suppose there is an isomorphism $\Phi:\operatorname{End}(M)\to\operatorname{End}(N)$ between $\operatorname{End}(M)$ and $\operatorname{End}(N)$. A (strong) isomorphism theorem (or an isomorphism problem) is to conclude that Φ is induced by an isomorphism $\phi:M\to N$; i.e, $\Phi(\alpha)=\phi\alpha\phi^{-1}$ for each α in $\operatorname{End}(M)$.

In 1954, Kaplansky in his book, infinite abelian group [K54], proved an isomorphism theorem for the endomorphism algebras of torsion modules over a complete discrete valuation domain. The existence of indecomposable summands for torsion-free modules enabled Wolfson [W62] to prove a similar theorem in the torsion-free case. Kaplansky's and Wolfsan's theorems have two things in common: (1) they put conditions on both modules; (2) they required that both modules be in the same class (i.e., either both torsion or both torsion-free). There is another type of isomorphism theorem, in which the class of only one of the modules is specified. For instance, May [M78] proved the theorem: If M is a nontorsion divisible module, thenanyiso morphism $\Phi: \operatorname{End}(M) \to \operatorname{End}(N)$ is induced by an isomorphism $\phi: M \to N$.

In this project we wish to do two things.

- We'll show the isomorphism problems of modules over a complete discrete valuation domain can be reduced to the isomorphism problems of reduced modules M with M/tM divisible.
- 2. We'll present an isomorphism theorem for a reduced module M with M/tM divisible.

三、結果與討論

Given modules M and N, suppose Φ is an isomorphism from $\operatorname{End}(M)$ onto $\operatorname{End}(N)$. By using the fact that M can be decompose as a direct sum of A and D (i.e., $M = A \oplus D$), where A is reduced and D is divisible, we can get a decomposition $N = A^* \oplus D^*$, and obtain two isomorphisms. $\operatorname{End}(A) \cong \operatorname{End}(A^*)$ and $\operatorname{End}(D) \cong \operatorname{End}(D^*)$.

Next, consider the possibility that whether there is an indecomposable torsion-free summand in D [F70, Theorem 23.1], then using the proofing technique of Kaplansky's theorem [K54] and May's theorem [M78], we could divide (a long process) the isomorphism problem into several cases, and end with the result: The solutions of the isomorphism problems for modules over complete discrete valuation domains depends on the solutions of the isomorphism problem for reduced modules M with M/tM divisible.

我們已將本研究所獲得之主要結果整 理繕寫後送交發表。在該文中,我們首先 定義模的同構性質如下:

Definition: A module M over a complete discrete valuation domain R is said to have the (strong) isomorphism property if $\Phi: \operatorname{End}(M) \to \operatorname{End}(N)$ is an isomorphism, then there is an isomorphism $\phi: M \to N$ such that $\Phi(\alpha) = \phi \alpha \phi^{-1}$ for each α in $\operatorname{End}(M)$.

之後,我們建立了以下主要的同構理論:

Theorem: Let M and N be reduced modules such that M/tM and N/tN are divisible. If N has the strong isomorphism property and M can be embedded as a summand of N, then $M \oplus N$ has the strong isomorphism property.

四、成果自評

本計畫之成果與原先預期之結果大致 完全符合。主要結果且已送交發表,尚有 部份結果,經由適當的整裡,也會陸續尋 求期刊發表。

五、参考文獻

[F70] László Fuchs, Infinite Abelian Groups, Volume 1, Academic Press, New York (1970)

[F73] László Fuchs, Infinite Abelian Groups, Volume 2, Academic Press, New York(1973)

[K54] Irving Kaplansky, Infinite Abelian Groups, U of Michigan Press, Ann Arbor, 1954

[L71] Wolfgang Liebert, Characterization of the endomorphism rings of divisible torsion modules and reduced complete torsion-free modules over complete discrete valuation rings, *Pac. J. Math.*, 37(1971), 141–170

[M78] Warren May, Endomorphism rings of abelian groups with ample divisible subgroups, Bull. London Math. Soc., 10(1978), 270–272

[M90] Warren May, Isomorphism of endomorphism algebras over complete discrete valuation rings, *Math. Z.*, **204**(1990), 485–499

[MT76] Warren May and Elias Toubassi,

Endomorphisms of abelian groups and the theorem of Baer and Kaplansky, J. of Algebra, 43(1976), 1-13

[W62] K. G. Wolfson, Isomorphism of endomorphism rings of torsion-free modules, *Proc. Amer. Math. Soc.*, **13**(1962), 712–714

附件:封面格式

計畫類別:☑個別型計畫 □整合型計畫

計畫編號:NSC89-2115-M-034-001

執行期間: 88年8月1日至90年7月31日

計畫主持人:程友文

共同主持人:

本成果報告包括以下應繳交之附件:

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

□出席國際學術會議心得報告及發表之論文各一份

□國際合作研究計畫國外研究報告書一份

執行單位:中國文化大學應用數學系

中華民國89年7月31日