文化大學機構典藏 CCUR:Item 987654321/2426
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 46962/50828 (92%)
Visitors : 12557853      Online Users : 408
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/2426


    Title: Simulating typhoon floods with gauge data and mesoscale-modeled rainfall in a mountainous watershed
    Authors: Li, M.H.;Yang, M.J.;Soong, R.;Huang, H.L.
    Contributors: 大氣科學系
    Date: 2005
    Issue Date: 2009-10-30 15:10:06 (UTC+8)
    Abstract: A physically based distributed hydrological model was applied to simulate typhoon floods over a mountainous watershed in Taiwan. The meteorological forcings include the observed gauge rainfall data and the predicted rainfall data from a mesoscale meteorological model, the fifth-generation Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5). This study investigates the flood responses of three Typhoons: Zeb (1998), Nari (2001). and Herb (1996). which possessed unique meteorological features and that all produced severe floods. The predicted basin-averaged rainfall hydrographs by the MM5 are compared with that interpreted by rain gauge data to reveal the discrepancies in rainfall peak amounts and time lags, and to explore their subsequent effects on flood generation. The simulated flood hydrographs at the Hsia-Yun station, which is upstream of the Shihmen Reservoir, are compared with observed flood discharges in terms of the amount and time lag of flood peaks. It is shown that the small discrepancy in rainfall peaks and phase lags could be significantly amplified in simulated flood responses of a mountainous watershed. The overall predictive skill of the distributed hydrological model with different rainfall inputs is examined with three parameters, which include the runoff ratio (RR), root-mean-square error (rmse), and goodness of fit (GOF). Although the runoff ratio for the MM5-predicted rainfall is superior to that for the observed gauge rainfall, the simulated hydrographs with observed gauge rainfall have smaller rmse and GOF values for three events. This study shows that the error in flood prediction with the mesoscale-modeled rainfall is mainly caused by the rainfall-peak difference, which arises from the inherent uncertainties in the mesoscale-modeled rainfalls over a mountainous terrain during the typhoon landfall periods.
    Relation: JOURNAL OF HYDROMETEOROLOGY v.6 n.3 Pages: 306-323
    Appears in Collections:[Department of Atmospheric Sciences & Graduate Institute of Earth Science / Atmospheric Science ] journal articles

    Files in This Item:

    There are no files associated with this item.



    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback