English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46962/50828 (92%)
造訪人次 : 12557012      線上人數 : 476
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/2425


    題名: Estimation of oceanic precipitation efficiency in cloud models
    作者: Sui, C.H.;Li, X.F.;Yang, M.J.;Huang, H.L.
    貢獻者: 大氣科學系
    日期: 2005
    上傳時間: 2009-10-30 15:09:07 (UTC+8)
    摘要: Precipitation efficiency is estimated based on vertically integrated budgets of water vapor and clouds using hourly data from both two-dimensional (2D) and three-dimensional (3D) cloud-resolving simulations. The 2D cloud-resolving model is forced by the vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE). The 3D cloud-resolving modeling is based on the fifth-generation Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5) simulation of Typhoon Nari (in 2001). The analysis of the hourly moisture and cloud budgets of the 2D simulation shows that the total moisture source (surface evaporation and vertically integrated moisture convergence) is converted into hydrometeors through vapor condensation and deposition rates regardless of the area size where the average is taken. This leads to the conclusion that the large-scale and cloud-microphysics precipitation efficiencies are statistically equivalent. Results further show that convergence (divergence) of hydrometeors would make precipitation efficiency larger (smaller). The precipitation efficiency tends to be larger (even > 100%) in light rain conditions as a result of hydrometeor convergence from the neighboring atmospheric columns. Analysis of the hourly moisture and cloud budgets of the 3D results from the simulation of a typhoon system with heavy rainfall generally supports that of 2D results from the simulation of the tropical convective system with moderate rainfall intensity.
    關聯: JOURNAL OF THE ATMOSPHERIC SCIENCES v.62 n.12 Pages: 4358-4370
    顯示於類別:[大氣系所] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋